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Quantitative insights about m olecules exhibiting Jahn± Teller and

related eŒects

by TIMOTHY A. BARCKHOLTZ and TERRY A. M ILLER

Department of Chemistry, Ohio State University, 120 West 18th Avenue,

Columbus, Ohio 43210± 1173, USA

Open-shell states of molecules undergo a variety of phenomena diŒerent
from closed-shell states. Two such eŒects, with which this paper is concerned,

are Jahn± Teller coupling and spin± orbit coupling. We ® rst develop a generalized
Hamiltonian for the Jahn± Teller coupling of the electronic and vibrational motion

and include the eŒects of spin± orbit coupling, we then consider the symmetry
properties of the Hamiltonian in detail. The potential energy surfaces for various

combinations of Jahn± Teller and spin± orbit coupling are also presented. The
vibronic and spin± vibronic energy levels for a C3v molecule are discussed in depth,

with particular attention paid to the results of our rigorous numerical calculations

of the eigenvalues and eigenfunctions. The results of these calculations are
compared and contrasted with many assumptions about the energy levels that

have been made in the past. While Jahn± Teller coupling has its largest eŒects
on the vibronic energy levels, it also has non-negligible eŒects on the rotational

energy levels. The rotational structure of Jahn± Teller states is developed, with
special emphasis on the coupling of the vibronic, rotational and spin angular

momenta. We discuss at length the relationship between Coriolis coupling and
the spin± rotation interaction and show how these eŒects are related to the spin±

vibronic Jahn± Teller and spin± orbit parameters of the state. Because most of
the experimental investigations of Jahn± Teller states have been via electronic

spectroscopy, we derive formulae for the intensities of these transitions in the
presence of Jahn± Teller and spin± orbit coupling. The ® nal portion of this article

is a review of the application of the theory to the analysis of the spin± vibronic
structure of the lowest excited states of several organometallic monomethyl

radicals and the ground states of the methoxy family of radicals. These examples
illustrate the diversity of signatures that Jahn± Teller active molecules display

in their electronic spectra, and the diŒerent ways in which the Jahn± Teller and
spin± orbit coupling can be elucidated from these signatures.
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1. Introduction

The original paper of Jahn and Teller [1] in 1936 that described the spontaneous

symmetry breaking of molecules in degenerate electronic states is one of the most

seminal in chemical physics. Indeed, about 50 years later, Bersuker [2] published a

bibliography of papers on the Jahn± Teller eŒect with over 3200 references. Moreover,

a number of excellent overviews of the subject have been published, both before

and contemporaneous with the bibliography [3 ± 9] . Why then is there a need today

for yet another review on the subject?

The simplest answer to that question is that in the little more than 10 years since

the publication of Bersuker’s bibliography, very signi® cant progress, both experi-

mentally and computationally, has been made towards quantitatively understanding

this eŒect in real molecules, isolated from environmental in¯ uences. Much of the

earlier experimental work was performed on condensed-phase systems where in-

herent molecular distortions were very di� cult to separate from environmentally

induced distortions. Recently, the coupling of high-resolution laser spectroscopy

with supersonic free jet cooling [10] has yielded, for the ® rst time, detailed spectra

revealing various characteristics attributable to, and quantifying, the Jahn± Teller

eŒect in isolated molecules.

During that same period of time, computational capabilities have grown by

orders of magnitude. As we shall see, these computational capabilities are often

necessary to extract quantitative information from the spectra. Similarly, the growth

in computational power has made possible meaningful ab initio calculations for the

open-shell molecular systems where experimental observations of Jahn± Teller eŒects

are possible.

The principal purpose of this review is to describe much of the combined

theoretical and experimental progress of the last few years. Our aim is to describe

the necessary theory underlying the spectral analyses and their interpretation in a

manner easily applicable to the increasing number of experiments requiring such

treatments. We shall illustrate our approach with several examples of Jahn± Teller

active molecules observed recently in our laboratory. The examples focus on some

simple, nominally C3v molecules, the lowest order symmetry group for which orbitally

degenerate states can occur and give rise to Jahn± Teller eŒects. These examples

include the 2E lowest excited electronic states of the metal methyl radicals M CH3

(M = Mg, Ca, Zn or Cd), and the 2E ground states of the methoxy family of radicals

CH3O, CH 3S, CF3O and CF3S. Numerous other Jahn± Teller active molecules have
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 437

also been studied as isolated species, a partial list of which includes C5H5 [11± 15],

C6H
+
6 [16± 20] , the substituted benzene cations sym-C6H3F

+
3 , C6F

+
6 , sym-C6H3Cl

+
3 ,

sym-C6Cl3F
+
3 and sym-C6Br3F

+
3 [7] , and the alkali and coinage metal trimers M 3

(M = Na [21] , Cu [22] , Ag [23] or Au [24]). However, we shall restrict our examples

to the methoxy and metal methyl families because of the abundance of data for

them and their similarities, and also because they are simple and light enough for

meaningful ab initio calculations.

In analysing the Jahn± Teller induced eŒects in the spectra of these molecules, we

have recognized that several c̀omplications’ that in the past were typically treated as

small perturbations or simply ignored often held the key to truly understanding these

spectra. With the present state of computational techniques, many approximations

are often no longer necessary and some quite interesting insights are now possible.

The original Jahn± Teller paper considered only the linear Jahn± Teller eŒect and all

early calculations focused on a single active mode. For a number of years now, it

has been realized that multimode calculations are necessary [7, 25] , but only recently

have they become computationally routine. Similarly, quadratic and other higher

order Jahn± Teller interactions have been theoretically recognized to be present but

generally hoped to be negligibly small for the molecules studied. This assumption is

no longer necessary.

Most importantly, the rami® cations of simultaneous Jahn± Teller eŒects and

spin± orbit coupling have largely been ignored, except for various perturbation

approaches, some group-theoretical arguments, and in a few isolated papers [24, 26±

30]. The orbital degeneracy requirement of the Jahn± Teller theorem necessitates non-

zero electronic orbital angular momentum. It also requires an open-shell electronic

con® guration, which, while possibly giving rise to singlet electronic states, has

resulted in non-zero electronic spin states in most of the Jahn± Teller active molecules

so far observed in the gas phase. This combination of electronic orbital angular

momentum and non-zero spin guarantees ® rst-order spin± orbit coupling interactions

in the molecules. Only in special cases is the spin± orbit coupling small enough to be

neglected. Generally speaking, both spin± orbit coupling and multimode Jahn± Teller

eŒects must be included to describe real molecules.

The remainder of this review is accordingly organized as follows. The existing

Jahn± Teller theory is reviewed and comprehensively formulated in section 2 to

include all the above-mentioned eŒects. Attention is given to symmetry properties

and the concept of a potential energy surface (PES). In the following section, the

results of accurate computations of the vibronic and spin± vibronic levels, including

all these eŒects, are compared with various approximations that have frequently

been adopted in the past. In section 4, the rotational structure of the vibronic Jahn±

Teller states is presented. Thereafter, the selection rules and intensities for electronic

transitions between a 2E state and a 2A1 or a 2A2 state under C3v symmetry are

developed, which are appropriate for the methoxy family of radicals and the metal

monomethyl radicals. The ® nal section gives examples of the analysis of the electronic

spectra of those Jahn± Teller active molecules. These examples illustrate several

diŒerent ways in which information about the Jahn± Teller and spin± orbit coupling

can be extracted from electronic spectra, as well as some of the pitfalls to beware.

This review article is intended, in part, as an experimentalist’s handbook for

the analysis of spectra of Jahn± Teller active molecules. Unfortunately, there has

been a great proliferation in the variety of notations for the various quantities

involved in Jahn± Teller and related interactions, leading to some confusion for both

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



438 T. A. Barckholtz and T. A. Miller

experimentalists and theoreticians alike. For this reason, we include in appendix A

a brief glossary of the symbols used in this paper.

2. The quantum m echanics of Jahn± Teller and spin ± orbit coupling

In our initial development, we shall consider a general treatment of the theory,

although we shall restrict ourselves to those point groups that have at most doubly

degenerate irreducible representations. This approach, while excluding the cubic

point groups, greatly simpli® es the notation and resulting expressions. Should the

need arise, extension to the cubic symmetries should be fairly straightforward. Later

in our development, we shall provide speci® c expositions corresponding to the C3v

symmetry of the molecules that we discuss as examples.

Hopefully this account will be a comprehensive guide, particularly for the ex-

perimentalist, however, it is important to recognize that it is, for the most part, not

original, although we believe in some parts to have made signi® cant extensions or

clari® cations of existing theory. Our exposition is based upon the seminal works in

the ® eld, ® rst by Longuet-Higgins and co-workers [31± 33] , and later by Brown [34],

Hougen [35] , and Watson [36], among others.

2.1. The basis set

Jahn± Teller coupling involves the interaction of the electronic motion in a

degenerate electronic state with the nuclear motion of degenerate vibrational modes,

while spin± orbit coupling is the interaction of the electron spin angular momentum

with the electronic orbital angular momentum. The complete basis set is therefore

the product of electronic, vibrational and electron spin basis functions:

|spin± vibronic ñ = |electronic ñ |vibrational ñ |electron spin ñ . (1)

(In section 4 we shall consider the rotation of the molecule. In this review we shall

not concern ourselves with nuclear spin.)

We take as the electronic portion of the basis set the two components of the

electronic state, denoted

|electronic ñ = | L ñ . (2)

The label L , which takes on the values + 1 or 1, distinguishes between the two

complex electronic functions that make up the basis. Even though for nonlinear

molecules L is not an eigenfunction of Lz , as it is for linear molecules, we can

still treat it as a good quantum number, as it distinguishes the angular momentum

properties of the two components of the degenerate state [36, 37].

We can also distinguish the two electronic components by their symmetry prop-

erties with respect to the ÃC n operation:

ÃC n | L ñ = exp
2 i

n
se L | L ñ , (3)

where se denotes which degenerate representation E se of the point group the elec-

tronic wavefunction transforms as. For those point groups with n % 4, there is only

one degenerate representation, denoted E , for which se = 1. While | L ñ may actually

have a rather complicated angular dependence, involving a linear combination of

functions of the form exp (ix ) with diŒerent values of x, each must obey equation (3)

in order that the overall function | L ñ transforms according to the Ese representation.

To the electronic basis set we add a set of vibrational quantum numbers. The
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 439

complete vibrational basis set is a product of all 3N 6 vibrational modes, where

N is the number of atoms in the molecule. However, we are interested only in those

vibrational modes that exhibit Jahn± Teller activity and shall consider explicitly

only these modes in the vibrational portion of the basis set. The vibrational basis

set is then the product of p two-dimensional harmonic oscillator wavefunctions

[37], each with the usual vibrational quantum numbers vi and li, the principal

vibrational quantum number and the vibrational angular momentum quantum

number, respectively. The vibrational portion of the basis set is therefore

|vibrational ñ =

p

i= 1

|vi, vli ñ . (4)

The vibrational basis functions |vi, li ñ can be taken to be proportional to exp (+ isvl u )

and transform as the symmetry species esv . The transformation properties, with

respect to the ÃC n operation, of the vibrational part of the basis set that is relevant

to the Jahn± Teller problem is

ÃC n

p

i= 1

|vi, li ñ = exp
2 i

n
svlt

p

i= 1

|vi, li ñ , (5)

where lt = i li. When more than one symmetry of vibrational mode is included,

the quantity sv lt should be replaced by a summation over the individual vibronic

angular momenta contributions.†

The relative signs in the exponentials of equations (3) and (5) warrant additional

comments. We assume the same phase convention for the electronic basis function

as given above for the vibrational basis function. We have then chosen to follow

the transformation conventions of Longuet-Higgins and co-workers [31± 33] . They

accomplished these conventions by de® ning opposite senses of the rotations for the

electronic and vibrational phase angles, respectively and u . We therefore de ® ne

the ÃC n operation to have the following eŒects on and u , that is ! 2 / n and

u ! u + 2 / n. W hile this might seem to be a peculiar choice by today’s standards, it

is the predominant phase convention in the Jahn± Teller literature. In later sections,

we shall draw special attention to those places where this phase convention may

introduce confusion.

When spin± orbit coupling is included, the projection S of the electron spin S on

the Cn axis is added to the basis set:

|electron spin ñ = |S, S ñ . (6)

Because S is conserved for all the terms in the Hamiltonian that we shall consider,

we do not explicitly include it in the basis set from here on. Under the ÃC n operation,

† For those point groups with C4 axes, the Jahn± Teller active modes are non-degenerate

and a slightly modi® ed basis set is required [38± 41] . In the C4v case, as well as any
case when one is considering the properties of the complete vibrational basis function,

a more general transformation relation was given by Hougen [38] , ÃC n |vibrational ñ =
exp [+ (2 i/ n)G s ] |vibrational ñ , with the present phase convention. If modes of only sym-

metry esv are considered, G s reduces to sv lt, as in equation (5). As mentioned earlier, we do
not explicitly consider the cubic point groups, for which degeneracies higher than two are

possible.
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440 T. A. Barckholtz and T. A. Miller

the spin portion of the basis set transforms as

ÃC n | S ñ = exp
2 i

n
S | S ñ . (7)

The ® nal spin± vibronic basis set can therefore be written as

| L ñ
p

i= 1

|vi, li ñ | S ñ , (8)

with

L = ± 1,

vi = 0, 1, 2, . . . ,

li = vi, vi 2, vi 4, . . . , vi + 2, vi,

S = S, S + 1, . . . , S 1, S

Under the harmonic oscillator approximation, each of the vi can take any positive

integer value, which makes the basis set in ® nitely large. Therefore, the basis set for

each Jahn± Teller active mode must be truncated to a manageable level. In general,

the larger the Jahn± Teller coupling constants are for each mode, the larger the

basis set must be for that mode. In practice, a relatively small basis set is typically

used to do some initial calculations. The basis set is then expanded until additional

basis functions have a negligible eŒect on the eigenvalues. We have not included the

totally symmetric modes, or any other vibrational modes that are not Jahn± Teller

active, in the basis set because they are not coupled into the calculation of the Jahn±

Teller vibronic energy levels using the approximate Hamiltonian developed in the

next section. In section 2.3, we shall place further restrictions on which vibrational

modes are explicitly included in the basis set, depending upon the electronic state’s

symmetry.

2.2. The Hamiltonian

The general Hamiltonian for any polyatomic system is

ÃH = ÃH T + ÃV + ÃH SO + ÃH rot , (9)

where ÃH T is the kinetic energy of the nuclei, ÃV is the electrostatic potential involving

the nuclei and electrons, ÃH SO is the spin± orbit coupling operator and ÃH rot is the

Hamiltonian for the rotation of the molecule, which we shall return to in section 4.

The potential ÃV can be expressed as a Taylor series expansion about the sym-

metric point in increasing powers of the vibrational normal coordinates,

ÃV =

k= 0

1

k!

3N 6

i= 1

¶ k ÃV

( ¶ Qi)
k

0

Q
k
i , (10)

where the summation over k runs to in® nity and the summation over i runs over

the 3N 6 normal modes. The normal coordinates of the p Jahn± Teller active

vibrational modes Qi,± are the complex combinations of the Cartesian coordinates

(Qi,1, Qi,2) for each mode i:

Qi,± = Qi,1 ± iQi,2 . (11)

where i = ( 1)1/ 2 . Expression of the normal coordinates can be made in terms of
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 441

Table 1. Terms in the vibronic potential of equation (13).

Term Description Form

ÃH 0
e Electronic potential at the symmetric

con® guration
Coulomb, exchange,. . .

ÃH h ,a Harmonic oscillator for the modes that are

not Jahn± Teller active

3N 6 2p

i= 1

1

2
k i |Qi |

2

ÃH h ,e Harmonic oscillator for the p Jahn± Teller

active modes

p

i= 1 r= + ,

1

2
k i |Qi,r |

2

ÃH l Linear Jahn± Teller coupling

p

i= 1 r= + ,

kiQi,r

ÃH q ii Quadratic Jahn± Teller coupling within a single
mode

p

i= 1 r= + ,

1

2
g ii Qi,r

2

ÃH q ij Quadratic Jahn± Teller coupling between two
modes

p

i= 1 r= + , j > i

1

2 g ij Qi,rQj ,r

cylindrical coordinates,

Qi,± = q i exp (± i u i), (12)

which will be useful later in the visualization of the PESs.

The Taylor expansion of ÃV is normally truncated at the quadratic terms and can

be rewritten as

ÃV = ÃH 0
e + ÃH h,a + ÃH h,e + ÃH l + ÃH q ii + ÃH qij , (13)

where the explicit form for each term is given in table 1. The ® rst term, ÃH 0
e , is

the electronic potential at the symmetric con® guration. The second term, ÃH h,a , is

the harmonic oscillator potential for the modes that are not Jahn± Teller active and

need not be considered further. The last four terms describe the potential for the

p Jahn± Teller active modes. The ® rst of these four terms, ÃH h,e , is the harmonic

oscillator potential for each Jahn± Teller vibrational mode, the second, ÃH l, is the

linear Jahn± Teller coupling potential, the third, ÃH q ii , is the quadratic Jahn± Teller

interaction within a single vibrational mode, and the last term, ÃH qij , is the quadratic

Jahn± Teller eŒect between two diŒerent Jahn± Teller active modes. The last three

terms of equation (13) are zero for a non-degenerate state but can be non-zero for

an orbitally degenerate state. All of the terms in equation (13) except the second

(noted above) and the last will be discussed in detail in this paper. To date, little

work has been done involving ÃH q ij . We shall also neglect it because, to the best

of our knowledge, no spectroscopic analysis thus far has necessitated its inclusion

in the Hamiltonian. That is not to say, however, that the vibrational modes of the

molecule are not mixed via Jahn± Teller coupling, we shall return to this point in

section 3.2.4. A b̀ilinear coupling’ term has also been described that mixes the totally

symmetric modes with the Jahn± Teller active modes [42± 44] . While such a term is

certainly possible in ÃV , we shall not consider it in detail as it has never been invoked

in the analysis of experimental spectra and probably would be signi® cant only with

respect to combination levels involving both Jahn± Teller active and inactive modes.
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442 T. A. Barckholtz and T. A. Miller

The parameters k i, ki, and g ij of table 1 are de® ned as

k i = á L |
¶ 2 ÃV

¶ Qi,+ ¶ Qi,
0

| L ñ , (14)

ki = á L |
¶ ÃV

¶ Qi,±
0

| L ñ , (15)

gij = á L |
¶ 2 ÃV

¶ Qi,± ¶ Qj ,±
0

| L ñ , (16)

where the subscript 0 indicates that the evaluation is to be performed at the

symmetric or èquilibrium’ con® guration. The parameter k i is the curvature of

the PES at the symmetric point with respect to the ith vibrational mode. The

corresponding vibrational frequency is given by

x e,i =
1

2 c

k i

M i

1/ 2

, (17)

where M i is the reduced mass of the vibrational mode.

The driving force behind Jahn± Teller coupling is the spontaneous distortion of

the molecule to lower its energy, which arises through the last three terms of equation

(13) and the parameters de® ned by equations (15) and (16). These parameters, ki

and gii, are non-zero only between the two diŒerent components of the degenerate

electronic wavefunction | L ñ . Because they involve the nuclear coordinates Qi,± , the

terms ÃH l and ÃH q ii in the Hamiltonian are what give rise to the coupling of the

electronic and vibrational degrees of freedom. In a non-degenerate electronic state,

ki and gii are zero by symmetry. In a degenerate state, the Jahn± Teller theorem shows

that the gradient at the symmetric point is non-zero, the potential energy surface

has a cusp at the symmetric point, and the PES has its minimum at an asymmetric

con® guration of the nuclei. We shall consider visualizations of the potential energy

surface after we consider the symmetry properties of the basis set with which we

shall approach the Hamiltonian.

The third term of the Hamiltonian (9) is the spin± orbit coupling operator, ÃH SO ,

which can be written as

ÃH SO = a ÃL ´ ÃS = a ÃLz
ÃSz . (18)

As Hougen [35] pointed out, for molecules with an n-fold (n > 3) symmetry axis

(z ), ® rst-order contributions from the term a( ÃLx
ÃSx + ÃLy

ÃSy ) will vanish because of

symmetry [45] , thereby yielding the second equality of equation (18), though second-

order terms are potentially signi® cant for the spin± rotation interactions of the state

[35, 46, 47]. Furthermore, rather than use the exact form of the spin± orbit operator,

we have chosen the traditional form for it of a ÃL ´ ÃS, which su� ces so long as

spin± orbit coupling between states of diŒerent L and S is unimportant, as is the

case with Russell± Saunders coupling in atoms [48± 50] .

2.3. Symmetry properties of the Hamiltonian and the basis set

2.3.1. Symmetry of Jahn± Teller active modes

Up to this point no restrictions have been placed on the symmetry of the

vibrational modes that are Jahn± Teller active, other than the obvious restriction

that they not be totally symmetric. The symmetries of the Jahn± Teller active modes
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 443

can be derived by examining the transformation properties under the ÃC n rotation of

the terms in the Taylor series expansion of the potential, equation (10). Our approach

is modelled after derivations by Brown [34] and Hougen [51] , but is more general.

If the electronic coordinates are written in cylindrical coordinates, the angular

portion of the kth derivative ¶ k ÃV / ¶ Q±
k
, transforms under rotations as

exp (ip ), (19)

where is the electronic angular coordinate. The restrictions on p can be determined

from the symmetry properties of the matrix element,

ÃC n á L | exp (ip ) | L ¢ ñ = exp
2 i

n
(se D L + p) á L | exp (ip ) | L ¢ ñ , (20)

with

D L = L ¢ L , (21)

where L and L ¢ are components of the same degenerate electronic state. For the

matrix element not to vanish, the only possible values for D L are 0 and ± 2, so

p must be either 0 or 7 2se . Those operators that transform as exp (0 ) are the

harmonic oscillator and symmetric anharmonicity terms, while those that are of

the form exp (± 2ise ) correspond to the Jahn± Teller operators. Higher-order values

of p = ± 2se + mn (m is an integer) are possible but still transform the same, and

consideration of them is therefore redundant.

The vibrational coordinate operator Qk
± transforms as the kth symmetric direct

product of Q. In cylindrical coordinates q and u , we need only consider the function

that transforms as

q
k
exp (± iksv u ). (22)

The kth-order symmetric product of Q also contains functions of the form

exp (± ix u ) where |x| < |ksv |. However these functions can be viewed as just higher-

order corrections to terms resulting from lower-order Jahn± Teller terms, Qx
± , some-

what analogous to anharmonicity corrections to harmonic frequencies, and therefore

do not merit special attention. The most general form of the kth-order Jahn± Teller

coupling Hamiltonian therefore transforms as the sum of the possible combinations

of these functions:

ÃH
(k)

JT = exp (+ 2ise ) q
k
exp (+ iksv u ) + q

k
exp ( iksv u )

+ exp ( 2ise ) q
k
exp (+ iksv u ) + q

k
exp ( iksv u ) . (23)

However, only the terms of equation (23) that are totally symmetric for the molecular

symmetry point group will be non-zero.

Operating on the ® rst terms of equation (23) with the ÃC n rotation yields

ÃC n exp (+ 2ise ) q
k

exp (+ iksv u ) = exp
2 i

n
(2se ksv )

3 exp (+ 2ise ) q
k

exp (+ iksv u ) (24)

and

ÃC nexp (+ 2ise ) q
k

exp ( iksv u ) = exp
2 i

n
(2se + ksv)

3 exp (+ 2ise ) q
k

exp ( iksv u ) (25)
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444 T. A. Barckholtz and T. A. Miller

Table 2. Allowed values of se , sv and sk for n % 6 and k = 1 or 2: N/ A, not applicable.

n k se sv sk j (k)

3 1 1 1 0 l +
1

2 L
2 1 1 1

1

2
l

1

2 L
4 1 1 2 0 or 1 N/ A

2 1 1 0 or 1 N/ A

5 1 1 2 1 l
1

2 L
2 1 0 l +

1

2 L
2 1 1 1 1

2
l 1

2 L
2 2 1

1

2 l
1

2 L
6 1 1 2 1 l

1

2 L
2 2 0 l + 1

2 L
2 1 1 1

1

2 l
1

2 L
1 2 0

1

2
l +

1

2 L
2 1 0 1

2
l + 1

2 L
2 2 1

1

2 l
1

2 L

(A similar pair of equations will be obtained for the last two terms of equation (23).)

For one of these two terms of ÃH
(k)

JT to be totally symmetric, the quantity (2se ± ksv)

must be an integer multiple of n:

[2se + ( 1)
sk ksv ] mod n = 0, (26)

where sk is either 0 or 1. For a given vibrational mode esv and a given electronic state

of symmetry E se , a value for sk of either 0 or 1 can be chosen to satisfy equation (26).

For a given combination of se and sv, only one of the ® rst two terms of equation

(23) and only one of the last two terms of equation (23) will survive, reducing it to

ÃH
(k)

JT = exp (+ 2ise ) q
k

exp [ ( 1)
sk iksv u ] + exp ( 2ise ) q

k
exp [+ ( 1)

sk iksv u ] . (27)

For k & 2, there may be more than one symmetry sv of vibrational mode for which

equation (26) may be satis® ed, they will not necessarily have the same form for the

kth-order Jahn± Teller Hamiltonian. In table 2 we have listed the allowable values

of sk for all the combinations of se and sv for the Cn point groups (n % 6) and

hence determined which terms of the Jahn± Teller Hamiltonian need to be considered

further. (The point groups with C4 axes require special treatment. In these point

groups, the symmetry species that transforms as sv = 2 is not e2 , which does not

exist for these point groups, but separates into b1 and b2 .) Table 2 gives the only

allowable combinations of se, sv and sk for non-vanishing terms in the Hamiltonian.

For a state of a given electronic symmetry E se only certain vibrational modes of

symmetry esv give rise to Jahn± Teller eŒects of order k. For example, in point groups

with a C5 axis, an E2 electronic state can only have a linear Jahn± Teller eŒect for

an e1 vibrational mode, whereas only e2 vibrational modes give rise to quadratic

Jahn± Teller coupling.

In a recent paper [19] studying the Jahn± Teller (and pseudo-Jahn± Teller) eŒect in

the excited B 2E2g state of benzene, it was suggested that the linear Jahn± Teller eŒect

should be quite small. It was argued that, as the aromatic system is enlarged and

approaches the circular limit, linear Jahn± Teller coupling should vanish altogether.
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 445

However, we note that table 2, and previous group-theoretical approaches, clearly

predict a non-vanishing linear Jahn± Teller interaction for E2g electronic states of D6h

symmetry. We agree with Goode et al. [19] that, as a molecular system approaches

circular symmetry, the linear Jahn± Teller eŒect vanishes, as is well known for

linear molecules. Our present approach shows that in D6h symmetry the electronic

part of the Jahn± Teller operator is of the form exp (± 2ise ), which for the E2g

state corresponds to exp (± 4i ). This operator is formally of higher order than the

operator responsible for linear Jahn± Teller coupling in the C3v point group, which

is exp (± 2i ). Whether the higher-order dependence on leads to a much smaller

linear Jahn± Teller interaction is a question that only experiment or perhaps detailed

numerical calculations can answer.

In addition to the restrictions based on the symmetry properties about a rota-

tional axis of the molecule, restrictions can also be placed on the vibrational modes’

symmetry with respect to a centre of inversion and mirror planes. In practice these

additional operations determine whether the active modes are g or u, with respect to

the centre of inversion, or symmetric ( ¢ ) or antisymmetric ( ¢ ¢ ), with respect to mirror

planes. Since the linear Jahn± Teller term must be symmetric with respect to these

operations, the linear Jahn± Teller active modes are restricted to g and symmetric ( ¢ )
modes. These restrictions are lifted for the quadratic modes. Table 3, which includes

the cubic point groups T d and Oh and the linear point groups C ¥ v and D ¥ h , is

derived from these principles and is similar to a less comprehensive table produced

by Herzberg [37] . It contains a list of the symmetries of vibrational modes that

are active for linear and quadratic coupling for most of the common point groups.

For a given electronic state of the non-cubic point groups, only one symmetry of

vibrational mode will be active under linear Jahn± Teller coupling while more than

one type may be active via quadratic Jahn± Teller coupling.

A seemingly peculiar result is contained within table 3. As the table shows, a

vibrational mode may have a non-zero linear Jahn± Teller coupling constant, but

by symmetry must have zero quadratic Jahn± Teller coupling. The reverse may also

hold true. This point was demonstrated earlier by Hougen [38] for molecules of D4h

symmetry and by Scharf and co-workers [52, 53] for molecules of D6h symmetry.

Another good example of this situation is the X 2E ¢ ¢
1 state of the cyclopentadienyl

radical, C5H5 (D5h), in which the e ¢
2 vibrational modes are active under linear Jahn±

Teller coupling but are not active under quadratic coupling [11, 15] . Conversely, the

e ¢
1 and e ¢ ¢

1 modes may show quadratic Jahn± Teller activity, but no linear Jahn± Teller

coupling. While it might seem odd that a molecule would exhibit linear Jahn± Teller

coupling only in one vibrational mode and quadratic Jahn± Teller coupling only in a

diŒerent vibrational mode, there is no a priori reason that this should not be the case.

Table 3 also contains entries for the linear point groups. For all degenerate

states of the linear point groups C ¥ v and D ¥ h , no linear Jahn± Teller coupling is

possible. However, q̀uadratic Jahn± Teller’ coupling is possible for P states, but

not for any others. Quadratic Jahn± Teller coupling in P states of linear molecules

is normally referred to as Renner± Teller coupling [54± 56] . Renner± Teller coupling

for linear molecules and quadratic Jahn± Teller coupling for nonlinear molecules

are identical, except that the higher symmetry of the linear molecules preserves

more good quantum numbers and hence creates more symmetry blocking in the

Hamiltonian matrix. In D states of linear molecules, a distortion occurs only upon

going to quartic Jahn± Teller coupling, hence, the Renner± Teller eŒect in D states is

not directly analogous to quadratic coupling in nonlinear molecules [56, 57] .
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446 T. A. Barckholtz and T. A. Miller

Table 3. Symmetry species of normal modes that may produce linear and quadratic
Jahn± Teller distortions for a degenerate electronic state.

Symmetry of Symmetry of
Electronic linear Jahn± Teller quadratic Jahn± Teller

Point group state modes modes

D3h , (C3v , D3 , C3h , C3)a E ¢ e ¢ e ¢ , e ¢ ¢

E ¢ ¢ e ¢ e ¢ , e ¢ ¢

D4h , (C4v , D4 , D2d , C4h , C4 , S4 )b Eg b1g , b2g eg , eu

Eu b1g , b2g eg , eu

D4d E1 e2 e1 , e3

E2 b1 , b2 e2

E3 e2 e1 , e3

D5h , (C5v , D5 , C5h , C5)c E ¢
1 e ¢

2 e ¢
1 , e ¢ ¢

1

E ¢ ¢
1 e ¢

2 e ¢
1 , e ¢ ¢

1

E ¢
2 e ¢

1 e ¢
2 , e ¢ ¢

2

E ¢ ¢
2 e ¢

1 e ¢
2 , e ¢ ¢

2

C6v , C6 E1 e2 e1 , e2

E2 e2 e1 , e2

D6h , C6h , (D6 , D3d , S6)d E1g e2g e1g , e2g , e1u , e2u

E1u e2g e1g , e2g , e1u , e2u

E2g e2g e1g , e2g , e1u , e2u

E2u e2g e1g , e2g , e1u , e2u

Td E e e, t1 , t2

T1 ,T2 e, t2 e, t1 , t2

Oh Eg eg e1g , e2g , e1u , e2u

Eu eg e1g , e2g , e1u , e2u

T1g eg , t2g e1g , e2g , e1u , e2u

T1u eg , t2g e1g , e2g , e1u , e2u

T2g eg , t2g e1g , e2g , e1u , e2u

T2u eg , t2g e1g , e2g , e1u , e2u

D ¥ h (C ¥ v )e P g none g , u

P u none g , u

D g , F g , . . . none none

D u , F u , . . . none none

a For C3v , D3 and C3 , ¢ and ¢ ¢ should be omitted.
b For C4v , D4 , D2d , the subscripts g and u should be omitted, for C4h the subscripts 1 and 2

should be omitted, and for C4 and S4 all subscripts should be omitted.
c For C5v , D5 , and C5 , ¢ and ¢ ¢ should be omitted.
d For D6 the subscripts g and u should be omitted. For D3d the subscripts 1 and 2 should

be omitted.
e For C ¥ v , the subscripts g and u should be omitted.

Before concluding this section it is useful to mention p̀seudo-Jahn± Teller’

coupling which is, as the name implies, closely related to Jahn± Teller coupling.

Unfortunately, p̀seudo-Jahn± Teller coupling’ has often been referred to as s̀econd-

order Jahn± Teller coupling’. In our usage, s̀econd-order Jahn± Teller coupling’ and

q̀uadratic Jahn± Teller coupling’ are synonymous and refer to Jahn± Teller coupling

in a degenerate electronic state with an interaction term involving the square of the

vibrational normal mode, whereas p̀seudo-Jahn± Teller coupling’ is the coupling of

two diŒerent electronic states via a vibrational coordinate to the ® rst power. How-

ever, it is important to remember these two mechanisms result in the same eŒective

Hamiltonian within a degenerate electronic state and hence are not usually experi-

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantitative insights about molecules exhibiting Jahn± Teller eŒects 447

mentally distinguishable. The pseudo-Jahn± Teller eŒect occurs when one electronic

state is mixed with another electronic state not degenerate with the ® rst via vibronic

coupling. However, the Hamiltonian operator responsible for this `non-adiabatic’

interaction is identical with that for linear Jahn± Teller coupling, equation (27) with

k = 1. Pseudo-Jahn± Teller coupling is obviously strongest between states close in

energy. We shall not discuss pseudo-Jahn± Teller coupling any further in this review.

2.3.2. Jahn± Teller quantum numbers

The kth-order Jahn± Teller Hamiltonian, equation (27), is not diagonal in either L
or li, but will be diagonal in some linear combination of them. We shall restrict our

analysis to only the ® rst term of equation (27), equivalent results can be obtained

with the second term. The kth-order Jahn± Teller Hamiltonian operator will have

matrix elements in the basis set of equation (8), excluding spin, that will transform

under the ÃC n rotation as

ÃC n

p

i= 1

á vi, li | á L | exp (+ 2ise ) q
k

exp [ ( 1)
sk iksv u ] | L ¢ ñ

p

i= 1

|v ¢
i , l ¢i ñ

= ÃC n á L | exp (+ 2ise ) | L ¢ ñ
p

i= 1

á vi, li | q
k

exp [ ( 1)
sk iksv u ]

p

i= 1

|v ¢
i , l ¢

i ñ . (28)

We have already shown in equation (20) that the matrix element á L | exp (+ 2ise ) | L ¢ ñ
will have a selection rule on L of D L = 2. The selection rule on lt can be obtained

by continuing with the second half of equation (28):

ÃC n

p

i= 1

á vi, li | q
k

exp [ ( 1)
sk iksv u ]

p

i= 1

|v ¢
i , l ¢i ñ = exp

2 i

n
[ ( 1)

sk svk sv D lt]

= exp
2 i

n
sv [ ( 1)

sk k D lt ] , (29)

where D lt = i(l
¢
i li). From equations (20) and (29) we have the following selection

rules on L and lt for the ® rst term of ÃH
(k)

JT ,

D L = 2 (30)

D lt = ( 1)sk k. (31)

This pair of selection rules can be combined to give

1

k
D lt + 1

2
( 1)

sk D L = 0. (32)

A new quantum number can therefore be de® ned as

j
(k)

=
1

k
lt +

1
2
( 1)

sk L , (33)

for which ÃH
(k)

JT is diagonal. The speci® c relationships between j (k) , lt , and L are given

in table 2 for the common point groups.

The de® nition of j (k) is one instance where the phase convention of equations

(3) and (5) has an impact. If the alternative phase convention is chosen, the sign in

front of sv in equation (29) will be positive, rather than negative, which will lead to

j (k) being de® ned as j (k) = (1/ k)lt
1
2
( 1)sk L . Using the current phase convention,
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448 T. A. Barckholtz and T. A. Miller

one can see from table 2 that for point groups with a C3 axis, j (1) = lt +
1
2 L , in

agreement with the traditional de® nition.

It is often very useful to have an expression for D j (k) in terms of j (k 1) , for

example to simplify the matrix elements of the quadratic Jahn± Teller operator in

terms of the linear Jahn± Teller quantum number. From equation (33) we have the

following two relationships:

D j
(k)

=
1

k
D lt + 1

2
( 1)

sk D L , (34)

D j
(k 1)

=
1

k 1
D lt +

1
2
( 1)

sk 1 D L , (35)

whose diŒerence is

D j
(k) D j

(k 1)
=

1

k

1

k 1
D lt + 1

2 D L [ ( 1)
sk ( 1)

sk 1 ] . (36)

From equations (30) and (31), equation (36) becomes

D j
(k) D j

(k 1)
=

1

k

1

k 1
( 1)

sk k + [( 1)
sk ( 1)

sk 1 ] . (37)

Rearranging this equation leads to a selection rule on j (k) in terms of j (k 1) for the

® rst term of ÃH
(k)

JT :

D j
(k)

= D j
(k 1)

+ ( 1)
sk

k

k 1
( 1)

sk 1 . (38)

The second term of ÃH
(k)

JT will lead to a selection rule identical with this, but with

a minus sign in front of the quantity on the right. For j (k) to be a good quantum

number, it must be conserved with D j (k) = 0. Therefore, the generalized selection

rule on j (k) in terms of j (k 1) is

D j
(k)

= D j
(k 1) ± ( 1)

sk
k

k 1
( 1)

sk 1 = 0. (39)

All the values of k, sk and sk 1 are determined by the symmetry of the electronic state

and the symmetry of the Jahn± Teller active vibrational mode and are contained in

table 2 for k % 2. Consulting table 2, we note that for a given value of se , if a mode

(with a given value of sv) is active in the linear and quadratic Jahn± Teller eŒect,

sk= 1 and sk= 2 are never both odd or both even, leading to the general relationship

D j
(2)

= D j
(1) ± 3 = 0, (40)

which is the familiar identity quoted for C3v molecules.

2.3.3. Symmetry of the vibronic basis functions

In the next section, we deal with the symmetry of the spin± vibronic basis

functions, but under more restrictive conditions. In this section, we consider the

symmetry of the vibronic basis function | L ñ p

i= 1 |vi, li ñ and its relationship to j (1) .

Because in all our examples the linear (k = 1) Jahn± Teller term is by far the most

important, the behaviour of the basis functions with respect to j (1) is of unique

importance.
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The ÃC n rotation operating on the basis function gives

ÃC n | L ñ
p

i= 1

|vi, li ñ = exp
2 i

n
(se L sv lt) | L ñ

p

i= 1

|vi, li ñ . (41)

Because lt = j (1) 1
2
( 1)s1 L (equation (33)), equation (41) is equivalent to

ÃC n | L ñ
p

i= 1

|vi, li ñ = exp
2 i

n
se L sv j

(1) 1
2
( 1)

s1 L | L ñ
p

i= 1

|vi, li ñ

= exp
2 i

n

1
2 L [2se + sv( 1)

s1 ] sv j
(1) | L ñ

p

i= 1

|vi, li ñ

= exp
i

n
L mn exp +

2 i

n
sv j

(1) | L ñ
p

i= 1

|vi, li ñ

= exp +
2 i

n
sv j

(1) | L ñ
p

i= 1

|vi, li ñ . (42)

Therefore, those levels with j (1) = n/ 2 + mn (m is an integer) will transform into

themselves under the ÃC n rotation and will therefore transform as a non-degenerate

representation. Those basis functions with j (1)
/= n/ 2 + mn transform as a degenerate

representation.

One might think that, because j (1) is a half-integer quantum number, a double

group should be required to describe the symmetry properties of the basis functions.

To see why this is not the case, the ÃC n
n rotation on the basis function gives

ÃC
n
n | L ñ

p

i= 1

|vi, li ñ = exp [ 2 i(se L sv lt)] | L ñ
p

i= 1

|vi, li ñ . (43)

Because se , L , sv , and lt are all integers, exp [ 2 i(se L sv lt)] will be unity. There-

fore, the basis functions that are labelled by j (1) belong to a normal single-valued

point group. This may seem a little strange considering the extensive commentary in

the literature concerning the double-valuedness of the wavefunction in Jahn± Teller

problems. However, as was pointed out by Longuet-Higgins [33], it is the eigenfunc-

tions of the Jahn± Teller potential, for ® xed q , that are double valued. See section

2.4.1 for details.

2.3.4. Example: the C3v point group

The equations of the previous section are general for any point group with a Cn

axis but are somewhat abstract. In this section we work through these equations for

the speci® c case of the C3v point group and then extend it to the spin± vibronic basis

functions and the C3v double group.

In the C3v point group there is only one degenerate representation and se = sv =

1. From equation (26) and table 2, sk= 1 = 0 and sk= 2 = 1. The Jahn± Teller operators

are (equation (27)),

ÃH
(1)

JT (C3v) = exp (+ 2i ) q exp ( i u ) + exp ( 2i ) q exp (+ i u ), (44)

ÃH
(2)

JT (C3v ) = exp (+ 2i ) q 2 exp (+ 2i u ) + exp ( 2i ) q 2 exp ( 2i u ), (45)

which are the familiar forms of the Jahn± Teller operators [35, 51] .
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450 T. A. Barckholtz and T. A. Miller

For the C3v point group, the Jahn± Teller quantum numbers j (k) become

j (1) = lt +
1
2 L , (46)

j (2) =
1
2
lt

1
2 L . (47)

The Jahn± Teller quantum number j (k) is conserved for kth-order Jahn± Teller

coupling in that the selection rule on j (k) is D j (k) = 0, as noted earlier. In terms of

j (1) , the selection rule on j (2) is

D j
(2)

= D j
(1) ± 3 = 0.

Therefore

D j
(1)

= 7 3. (48)

The symmetry of the basis functions and therefore the vibronic energy levels is

dictated by j (1) , equation (42). Those functions with j (1) = ± 3
2
, ± 9

2
, . . . will transform

as a1 or a2, while all others, j (1) = ± 1
2
, ± 5

2
, ± 7

2
, ± 11

2
, . . ., will transform as e.

When spin is included in the basis set, the ÃC 3 rotation on the basis function gives

ÃC 3 | L ñ
p

i= 1

|vi, li ñ | S ñ = exp +
2 i

3
(j

(1) S ) | L ñ
p

i= 1

|vi, li ñ | S ñ . (49)

From equation (49), it is clear that a rotation by 2 ( ÃC 3
3) now changes the basis

function into minus itself if the spin is half-integer, and hence the double group

must be used. From the character table of the double group of C3v , if (j (1) S ) is

a multiple of 3, the function transforms as e3/ 2. If (j (1) S ) is not a multiple of 3,

the function transforms as e1/ 2 . Therefore, all levels from j (1) = ± 3
2 ± 3m will belong

to the e1/ 2 irreducible representation, while the j (1) = ± 1
2 ± 3m and j (1) = ± 5

2 ± 3m

levels will have one spin component of e1/ 2 symmetry and one component of e3/ 2

symmetry.

An alternative approach to the symmetry of the spin± vibronic basis functions is

to de® ne a new quantum number X :

X = L lt + S . (50)

The negative sign on lt is less than intuitive but follows as a result of the phase

convention chosen in equations (3) and (5). This reversal of the sign on lt bears

some analogy to the reversed internal angular momentum convention espoused by

Van Vleck [48] to deal with the well known change of sign of i in the commutation

relations for the rotational angular momentum quantized in the molecular frame.

The analogy is less than complete, nature dictates the change in sign for i, while

history is responsible for the sign of lt . However, since we are able to change neither

nature nor history, we have accepted this convention for the vibrational angular

momentum.

The above de® nition of X is analogous to the de® nition of X for a diatomic

molecule, with the addition of the vibrational angular momentum. The symmetry

properties of the basis functions are easily determined by their value of X :

ÃC 3 | L ñ
p

i= 1

|vi, li ñ | S ñ = exp
2 i

3
( L lt + S ) | L ñ

p

i= 1

|vi, li ñ | S ñ

= exp
2 i

3
X . (51)
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If X mod 3 = ± 1
2
, the basis function transforms as e1/ 2 , otherwise it transforms as

e3/ 2 .

2.4. Potential energy surfaces

The concept of a PES is one attributable to human intellect and not to nature.

It has its origins in the Born± Oppenheimer approximation, in which the electronic

PES is reasonably well de ® ned, particularly if spin ± orbit coupling is not considered.

On the other hand, the Jahn± Teller eŒect is perhaps the quintessential example of a

breakdown of the Born± Oppenheimer approximation. Because we want to consider

the PESs for Jahn± Teller active molecules for which spin± orbit coupling is signi® cant,

it may be reasonable to ask whether the concept of a PES remains appropriate. The

PES concept is still useful for these molecules, but it must be treated with a great

deal more care than in the usual cases. At least two types of PES are useful. The

® rst corresponds to the eigenvalues within the degenerate electronic space of ÃH e.

The second corresponds to the eigenvalues of ÃH e + ÃH SO within the space of the

electronic and spin functions. We now treat each of these cases in turn.

2.4.1. Potential energy surface without spin± orbit coupling

For simplicity, we shall only consider the PES for an 2E state of a nominally

C3v molecule. Liehr [3] has considered the PES corresponding to other symmetries.

We can obtain a useful de® nition of a PES in the following way. The ® rst and last

terms of the Hamiltonian (9) represent the kinetic energy of the nuclei and have

no role in de ® ning their PES, leaving ÃV + ÃH SO . In traditional treatments, ÃH SO has

been neglected under the assumption that it is small compared with ÃV . If we use

the basis set | L ñ | S ñ , we obtain the following matrix for ÃV :

k i

2
q

2
i q iki exp ( i u i) + q 2

i g ii exp ( 2i u i)

q iki exp ( i u i) + q 2
i g ii exp (2i u i)

k i

2
q 2

i

| L = 1 ñ | S ñ
| L = + 1 ñ | S ñ

.

(52)

Equation (52) is independent of spin, and so 2S + 1 equivalent versions of it exist,

one for each possible value of S . The eigenvalues of equation (52), denoted Ui,± ,

that can be identi® ed with the PES, are

Ui,± =
1
2
k i q

2
i ± q iki 1 +

2g ii q i

ki

cos (3 u i) +
g 2

ii q
2
i

k2
i

1/ 2

(53)

E 1
2
k i q

2
i ± ki q i + g ii q

2
i cos (3 u i) , (54)

where in the last equality the expansion of the radical has been truncated at terms

quadratic in q i. Figure 1(a) shows this surface in the absence of Jahn± Teller coupling,

that is ki = gii = 0. Figure 1(b) is a three-dimensional representation of the PES

when there is only linear Jahn± Teller coupling (ki /= 0, g ii = 0). Figures 2(a), (b), (c)

and (d) show representative slices for u i = 0 through the three-dimensional PES

for a single Jahn± Teller active mode for the following conditions respectively:

ki = g ii = 0, ki /= 0, g ii = 0, ki /= 0, g ii /= 0, ki = 0, g ii /= 0. Note that these surfaces

are (2S + 1)-fold degenerate, corresponding to the possible values of S .

As shown in the ® gures, the PES has a global minimum at the bottom of the

moat, owing to the linear Jahn± Teller coupling term. Quadratic Jahn± Teller coupling

creates around this moat local minima and maxima. The minima and local maxima
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452 T. A. Barckholtz and T. A. Miller

(a ) (b )

Figure 1. PES for (a) zero Jahn± Teller and zero spin± orbit coupling and (b) linear Jahn±

Teller coupling for a single active mode.

of the moat of the lower potential surface of equation (54) are given by

q min,i =
ki

k i(1 K i)
, u min,i = 0,

2

3
,

4

3
(55)

Emin,i =
k2

i

2 k i(1 K i)
=

Di x e,i

(1 K i)
E Di x e,i(1 + K i), (56)

q max,i =
ki

k i(1 + K i)
, u max,i =

3
, ,

5

3
, (57)

Emax,i =
k2

i

2 k i(1 + K i)
=

Di x e,i

(1 + K i)
E Di x e,i(1 K i). (58)

These formulae introduce two commonly used Jahn± Teller parameters: Di is the

linear Jahn± Teller coupling constant for the ith mode and K i is its quadratic Jahn±

Teller coupling constant. Both are dimensionless and are de® ned in terms of the

reduced mass M i of the mode and the parameters of table 1:

Di =
k2

i

2 "

M i

k 3
i

1/ 2

(59)

and

K i =
g ii

k i

. (60)

These parameters will be used henceforth to describe the Jahn± Teller coupling. The

energies of equations (56) and (58) are relative to the symmetric con® guration,

which is de® ned as the zero of energy. The depth « of the moat is the Jahn± Teller

stabilization energy and is a direct measure of the net eŒect the Jahn± Teller coupling

has on the energy of the molecule. From equations (56) and (58), for vanishing K i,

Emin ,i = Emax,i º « i, and we have

« i = Di x e,i. (61)

The total Jahn± Teller stabilization energy can conveniently be de® ned as the sum
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 453

Figure 2. PES for the various possible spin± orbit and Jahn± Teller coupling schemes. All
the curves with non-zero Jahn± Teller coupling (b)± (d), (g) and (h) are constructed

for the same strength of linear Jahn± Teller coupling. The top curves are all for cases
with zero spin± orbit coupling: (a) zero Jahn± Teller and zero spin± orbit coupling (i.e.

the harmonic oscillator only, Di = 0.0, K i = 0, a f e = 0), (b) linear Jahn± Teller
coupling (Di = 0.25, K i = 0, a f e = 0), (c) linear plus quadratic Jahn± Teller coupling

(Di = 0.25, K i = 0.1, a f e = 0), (d) quadratic Jahn± Teller coupling with exactly zero
linear coupling Di = 0, K i = 0.25, a f e = 0). The bottom curves, except for (e),

illustrate the cases with non-zero spin± orbit coupling: (e) zero Jahn± Teller and zero
spin± orbit coupling (Di = 0, K i = 0, a f e = 0), (f ) zero Jahn± Teller and non-zero

spin± orbit coupling (Di = 0, K i = 0, a f e / x e,i = 0.5), (g) linear Jahn± Teller plus
spin± orbit coupling, when a f e < 4Di x e,i (Di = 0.25, K i = 0, a f e / x e,i = 0.25),

(h) linear Jahn± Teller plus spin± orbit coupling when a f e > 4Di x e,i (Di = 0.25, K i = 0,
a f e / x e,i = 2.0). The curves are slices through the potential surface of a Jahn± Teller

active normal mode with u i = 0. (Only cases (c) and (d) will have a dependence on

u i .) For simplicity, the slice through only a single Jahn± Teller active mode is depicted.
The dotted lines are the zero of energy, de® ned as the bottom of the well of the

harmonic oscillator potential.

over each individual mode’s contribution:

« total =

p

i= 1

« i =

p

i= 1

Di x e,i. (62)

Because the Jahn± Teller stabilization energy « is assumed to be a positive number,

the linear coupling constants Di are also positive. However, no such constraint exists

for the quadratic coupling constants K i, which can be positive or negative. From

equations (55)± (58), it can be seen that the eŒect of the sign of K i on the PES is to

exchange the positions of the minima and the maxima around the moat with respect

to the angular vibrational coordinate.

Figure 2(d) illustrates the point made in the previous section that quadratic Jahn±

Teller coupling for nonlinear molecules is analogous to Renner± Teller coupling for

linear molecules. The potential drawn in ® gure 2(d) is for the case of non-zero

quadratic coupling, but zero linear coupling. The potential is identical with that for

Renner± Teller coupling in P states of linear molecules (for example, see ® gure 4(b)

of [37] ).
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454 T. A. Barckholtz and T. A. Miller

Finally, a word about the eigenfunctions of equation (52) is in order. As pointed

out by Longuet± Higgins [33], for ® xed q , as u goes from 0 to 2 the eigenfunctions

change sign. This is the origin of the extensive discussion in the literature about

the double-valuedness of the wavefunction in problems involving the Jahn± Teller

eŒect and related problems involving Berry’s [58] phase. Some workers have, at least

conceptually, used basis functions of the form of the eigenfunctions of equation (52)

and hence had to consider the double-valuedness of both their èlectronic’ and their

v̀ibrational’ basis functions. We, on the other hand, use as our basis the vibronic

functions of equation (43) and never explicitly deal with double-valuedness (except

for the spin functions) as in either approach the overall wavefunction (excluding

spin) must be single valued.

2.4.2. Potential energy surface with spin ± orbit coupling

All the equations and ® gures of the previous section assume that spin± orbit

coupling is negligible. Because the introduction of spin± orbit coupling partially

quenches the Jahn± Teller coupling (and vice versa), these equations must be modi® ed

for molecules that have signi® cant spin± orbit coupling, for which ÃH SO cannot be

neglected. The addition of spin± orbit coupling means that the form of the potential

must be modi® ed to account for it. Now the matrix of ÃV + ÃH SO is formed in the

same basis as before:

k i

2
q

2
i

a f e

2
q iki exp (+ i u i) 0 0

q iki exp ( i u i)
k i

2
q

2
i +

a f e

2
0 0

0 0
k i

2
q

2
i +

a f e

2
q iki exp (+ i u i)

0 0 q iki exp ( i u i)
k i

2
q

2
i

a f e

2

3

| L = 1 ñ S = +
1
2

| L = + 1 ñ S = + 1
2

| L = 1 ñ S =
1
2

| L = + 1 ñ S = 1
2

, (63)

where for simplicity it is assumed that quadratic Jahn± Teller coupling is negligible

and that S = 1
2
. Generalization to higher spin multiplicities is straightforward.

Because S is still preserved, the eigenvalues U± associated with the PES are each

degenerate, where

U i,± = 1
2
k i q

2
i ± 1

2
[4k

2
i q

2
i + (a f e)

2
]
1/ 2

. (64)

Spin± orbit interactions can have a tremendous impact on the shape of the PES,

as is evident by the changes in the location of the radial minimum, energies at the

minima, and Jahn± Teller stabilization energies:

q min,i =

1

2ki k i

(4k
4
i a

2
f

2
e k

2
i )

1/ 2
, a f e < 4Di x e,i,

0, a f e & 4Di x e,i,

(65)

« so
i = Emin,i =

Di x e,i +
(a f e)

2

16Di x e,i

, a f e < 4Di x e,i,

0, a f e & 4Di x e,i,

(66)
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 455

where « SO
i is the Jahn± Teller stabilization energy for mode i calculated including

spin± orbit coupling. As we mentioned in the introduction, spin± orbit coupling

and Jahn± Teller coupling involve the coupling of the electronic orbital angular

momentum of the molecule with spin angular momentum and vibrational angular

momentum respectively. Thus, both eŒects are competing for the electronic orbital

angular momentum. It is not surprising, therefore, that in equations (65) and (66)

the spin± orbit contribution has the opposite sign to the Jahn± Teller term, spin± orbit

coupling quenches Jahn± Teller coupling and Jahn± Teller coupling quenches spin±

orbit coupling. Indeed, two separate regimes can be usefully de® ned: one where

spin± orbit coupling largely eliminates the Jahn± Teller distortion (the case when

a f e > 4Di x e,i) and one where the molecule is distorted, but with a much quenched

spin± orbit splitting (a f e < 4Di x e,i).

Figures 2(f ) and (g) show the eŒects of moderate and large spin± orbit couplings,

respectively on the linear Jahn± Teller PESs. As can be seen, when the spin± orbit

coupling is not zero, the two surfaces no longer intersect at q i = 0, they are separated

by an energy diŒerence of a f e. Second, the minimum of the moat has contracted

and risen in energy. In fact, if a f e > 4Di x e,i the minimum occurs at the symmetric

point and there is no longer any stabilization at asymmetric geometries (® gure 2(g )).

This statement does not, however, mean that, if a f e > 4Di x e,i the Jahn± Teller terms

in the Hamiltonian can be neglected. As we shall see in the rest of this paper,

when Jahn± Teller coupling and spin± orbit coupling are both non-negligible, the

exact eigenvalues and eigenfunctions of the entire Hamiltonian must be numerically

computed if spectroscopic accuracy is to be attained.

There is one other signi® cant change in the PES upon the addition of spin±

orbit coupling. In the absence of spin± orbit coupling, the two potentials cross

as a conical intersection at the symmetric con® guration, q i = 0, forming a cusp.

However, when spin± orbit coupling is present, the two curves do not intersect and

the two curves look more like an avoided crossing. Rather than forming a cusp

at q i = 0, the two curves each smoothly change slope, with the upper surface

having a minimum at the symmetric con® guration and the lower surface having a

maximum, for small spin± orbit coupling. When spin± orbit coupling is much larger,

each of the two surfaces has a minimum at the symmetric con® guration and no

other minima or maxima. However, the curvature of the surfaces is such that it

is not the same as the curvature of the surface in the absence of Jahn± Teller

coupling, note how much broader and ¯ atter the potential of ® gure 2(h) is in

comparison with ® gure 2(f ). In a sense, then, the two potential surfaces never

cross and never form a cusp, as spin± orbit coupling will always be present to some

extent, although it may be su� ciently small for the intersection to be practically a

cusp.

Equations (52)± (66) have all been given for a single Jahn± Teller active vibrational

mode. For the case when there is more than one Jahn± Teller active mode, radial

minima and maxima exist for each mode, and each mode has its own Jahn± Teller

stabilization energy (equation (61) or (66)). The total Jahn± Teller stabilization energy

may therefore be considered as a summation of equation (56) or equation (66) over

all the active modes. However, there is no guarantee that a point exists on the

true PES having a stabilization energy this great. An intriguing possibility in the

multimode case is that the spin± orbit coupling may be large enough to quench

completely the Jahn± Teller distortion in one of the modes, but not large enough to

quench it in another mode.
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456 T. A. Barckholtz and T. A. Miller

2.5. Hamiltonian matrix

In the previous section we obtained the PESs for the molecule, ® rst without and

then with spin± orbit coupling. To determine the vibronic (or spin± vibronic) energy

levels on these PESs, we now need to quantize the nuclear motion. We do this by

including the nuclear kinetic energy ÃHT of equation (9) and computing the matrix

elements of the nuclear coordinate operators in equations (52) and (63). Conceptually

it might be simplest to calculate the appropriate v̀ibrational matrix elements’ in the

eigenfunction basis corresponding to the electronic or spin± electronic PES. However,

it is more e� cient, and ultimately more accurate, to use the p̀rimitive’ basis set that

spans all three spaces (electronic, vibrational and spin) rather than a product of a

vibrational basis and an eigenfunction of the electronic or spin± electronic PES. In

the truest sense then, our calculations, like nature itself, avoids the concept of a PES.

Rather, it proceeds directly to the observable quantized energy levels. Nonetheless

the nature of the surface that could support the calculated levels is of considerable

conceptual interest, and for this reason we shall often refer back to the PES created

by the molecular parameters consistent with the experimental eigenenergies and

eigenfunctions.

The matrix elements of the spin± orbit Jahn± Teller Hamiltonian, (9) are as

follows:

á S |
p

i= 1

á vi, li | á L | ÃH e | L ñ
p

i= 1

|vi, li ñ | S ñ = E0 º 0, (67)

á S |
p

i= 1

á vi, li | á L | ÃH T + ÃH h,e + ÃH anh,e | L ñ
p

i= 1

|vi, li ñ | S ñ =

p

i= 1

x e,i(vi+ 1) x e,ixe,i(vi+ 1)
2
,

(68)

á S |
p

i= 1

á vi, li | á L | ÃH SO | L ñ
p

i= 1

|vi, li ñ | S ñ = a f e L S , (69)

á S |
p

i= 1

á vi, li | á ± | ÃH l | 7 ñ
p

i= 1

v
¢
i , l

¢
i | S ñ

=

i

x e,i [Di (vi 7 ( 1)
s1 li + 2)]

1/ 2

3 d vi + 1,v
¢
i
d li 7 ( 1)s1 ,l

¢
i

j /= i

d vj ,v
¢
j
d lj ,l

¢
j

+

i

x e,i [Di (vi ± ( 1)
s1 li)]

1/ 2

3 d vi 1,v
¢
i
d li 7 ( 1)s1 ,l

¢
i

j /= i

d vj ,v
¢
j
d lj ,l

¢
j

, (70)
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á S |
p

i= 1

á vi, li | á ± | ÃH q ii | 7 ñ
p

i= 1

v
¢
i , l

¢
i | S ñ

=

i

x e,i

K i

4
[(vi 7 ( 1)

s2 li) (vi 7 ( 1)
s2 li 2]

1/ 2

3 d vi 2,v
¢
i
d li± 2( 1)s2 ,l

¢
i

j /= i

d vj ,v
¢
j
d lj ,l

¢
j

+

i

x e,i

K i

2
[(vi ± ( 1)

s2 li + 2) (vi 7 ( 1)
s2 li)]

1/ 2

3 d vi ,v
¢
i
d li± 2( 1)s2 ,l

¢
i

j /= i

d vj ,v
¢
j
d lj ,l

¢
j

+

i

x e,i

K i

4
[(vi ± ( 1)

s2 li + 4) (vi ± ( 1)
s2 li + 2]

1/ 2

3 d vi + 2,v
¢
i
d li± 2( 1)s2 ,l

¢
i

j /= i

d vj ,v
¢
j
d lj ,l

¢
j

. (71)

The ® rst term in the potential (13), ÃH e, is the electronic operator that will give

the total energy E0 of the molecule at the symmetric point. Because it plays no role

in determining the vibronic structure within the state, we de® ne it as the zero of

energy for the state.

The harmonic oscillator operator ÃH h,e is diagonal in the basis set of equation

(8) with matrix elements of x e,i(vi + 1) for each of the Jahn± Teller active modes.

We have also included the symmetric anharmonicity of the mode, although we shall

not discuss this term in any detail. The spin± orbit coupling operator ÃH SO also has

diagonal matrix elements in the basis and are given in equation (69). Note that

x e,i and a have units of energy, typically given in reciprocal centimetres, while f e is

dimensionless (see below and also appendix A).

A few words of explanation are in order with respect to our writing the matrix

elements of ÃH SO as a f e L S . As our basis corresponds to eigenfunctions of Sz with

eigenvalues S , the last factor is obvious. The remainder of the expression requires

á L | a ÃLz | L ñ = a f e L , (72)

where it must be remembered that, in our usage, L distinguishes between the two

components of the degenerate electronic wavefunction and can therefore only take

upon the values L = ± 1. The parameter f e is de ® ned as the projection of the

electronic orbital angular momentum on the symmetry axis:

á E+ | ÃLz |E+ ñ = á E | ÃLz |E ñ = f e . (73)

In the cylindrically symmetric limit, f e L ! L ¢ , where L ¢ takes on the conserved

integer projections of the electronic angular momentum. For linear molecules, | L ¢ |
can have the values 0, 1, 2, . . ., corresponding to states of S , * , D , . . . symmetry.

In the nonlinear point groups, the symmetry label ± se corresponds to L ¢ of the
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458 T. A. Barckholtz and T. A. Miller

cylindrical limit. When one moves away from the cylindrical limit, the spin± orbit

coupling is modi® ed by two physically distinct mechanisms. First, the electronic

angular momentum is reduced by the electrostatic impediments to electronic motion

created by the presence of oŒ-axis atoms, to a value of f e L , where f e is in general

non-integer and hence f e L is smaller in magnitude than L ¢ . The second eŒect

involves the delocalization of the ùnpaired’ electron(s) from atoms on the axis to

those oŒthe axis, which can cause a to increase or decrease, depending on which

atoms are oŒthe axis and what the strengths of their respective contributions to the

spin± orbit coupling are. The value of a is an approximate measure of the strength

of the interaction of the electron(s) with the individual nuclei, which depends upon

the nature of the nucleus and the spatial extent of the electronic wavefunction.

In section 3.2.2 we shall see that a third factor can also reduce the observed spin

splitting. This is the Ham [29, 59] reduction factor, which physically corresponds to

the lowering of the molecule’s symmetry and concomitant quenching of the orbital

angular momentum by the Jahn± Teller distortion.

The linear Jahn± Teller operator is clearly not diagonal in the basis set (8) and

is responsible for the mode mixing, geometric distortions and changes in vibronic

transition intensities. Its matrix elements [60] follow the selection rules D S = 0,

D vi = ± 1, and a simultaneous change in L and li, D L = 2( 1)s1 D li = ± 2, so that

D j (1) = 0. This selection rule depends upon the value of s1 , which depends upon

se and sv . This dependence has been implemented in equations (67)± (71) and our

computer program that diagonalizes this matrix. For a given non-zero oŒ-diagonal

matrix element, only one vibrational mode changes quantum numbers, if a matrix

element is non-diagonal in more than one mode, its value is exactly zero. Each

Jahn± Teller active mode has associated with it a dimensionless linear Jahn± Teller

coupling constant Di (equation (59)). Of the original quantum numbers in the basis

set (8), only S remains a good quantum number under spin± orbit coupling and linear

Jahn± Teller coupling. However, as we saw from symmetry arguments in section 2.3

and explicitly in equations (67)± (71), j can be de ® ned as a good quantum number

under linear Jahn± Teller coupling. (From here on we drop the superscript (1) from

j (1) .) In the absence of quadratic Jahn± Teller interactions the energy levels of + j are

degenerate with those of j [31] .

The matrix elements for the quadratic Jahn± Teller portion of the Hamiltonian

are slightly more complicated than those for the linear case. The selection rules

for the quadratic matrix elements are D S = 0, D vi = 0, ± 2, and a simultaneous

change in L and li, D L = ( 1)s2 D li = ± 2. Each Jahn± Teller active mode has a

quadratic coupling constant K i which is dimensionless (equation (60)). The spin

angular momentum quantum number S is still a good quantum number, but the

quadratic Jahn± Teller eŒect destroys the j quantum number. However, the matrix

will still be block diagonal in j (2) .

The diagonalization of the Hamiltonian is now a straightforward process. The

general form for the eigenfunctions |j , n j , a , S ñ is

|j , n j , a , S ñ =

i

ci,n j ,S | L i ñ
p

m= 1

|vm,i, lm,i ñ | S i ñ , (74)

where the summation runs over all the basis functions used in the calculation. For

a coe� cient ci,n j ,S to be non-zero, the selection rule on j must be satis ® ed by the

basis function. Each eigenvector |j , n j , a , S ñ has an associated eigenvalue E j ,n j ,S . The
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notation |j , n j , a , S ñ indicates to which j block the level corresponds and which

eigenvector n j it is from that symmetry block corresponding to a given j (j mod 3

when quadratic coupling is included) and S combination, with the lowest-energy

solution of each symmetry block being n j = 1. If quadratic coupling is small relative

to linear coupling, states of diŒerent j will be mixed only slightly, and j remains

a useful descriptor of the states even though it is rigorously not a good quantum

number under quadratic Jahn± Teller coupling. This is the case for all the examples

that we show later, and probably many others. Because j is not always a good

quantum number, we have included into the ket the label a , which is the symmetry

species of the state. If non-integer spin is included in the basis set, the spin double

group must be used. For the example case of a doublet state of C3v symmetry, the

species of the basis function may be either e1/ 2 or e3/ 2 , see the discussion of section

2.3.4. Note also that there are now two subscripts on the quantum numbers v and l

in the basis functions of equation (74). The ® rst, m, corresponds to which vibrational

mode the quantum number refers while the second, i, represents the basis function

to which the quantum number belongs.

The quantum number S is included in the summation only when spin± orbit

coupling is included in the Hamiltonian, in its absence, equation (74) becomes

|j , nj , a ñ | S ñ =

i

ci,n j | L i ñ
p

m= 1

|vm,i, lm,i ñ | S ñ . (75)

In the two limits of small spin ± orbit coupling or large Jahn± Teller coupling the spin±

vibronic wavefunction is approximately identical with the vibronic wavefunction, that

is |j , n j , a ñ | S ñ E |j , n j , a , S ñ . At these limits, the two components of the spin± orbit

doublet have essentially identical vibronic wavefunctions and PESs. In this case, a
denotes the vibronic symmetry of the level, a1, a2 or e, for the C3v group.

Our choice of basis set is not the only choice. For all the vibronic energy levels

of e symmetry, there will be two eigenvectors that diŒer by their signs of j , L i, lm,i

and S . The j analogue of equation (74) is

| j , n j , a , S ñ =

i

ci,n j ,S | L i ñ
p

m= 1

|vm,i, lm,i ñ | S i ñ . (76)

For the levels of e symmetry, any linear combination of the two ± j components

will be a valid solution. In solving the rotational problem for a 2E state, a common

choice for the vibronic portion of the basis set is [34]

|( L , v, l, j ) , S , ± ñ = 2
1/ 2 |j , n j , a , S ñ ± | j , nj , a , S ñ . (77)

(The left-hand side of equation (77) is the normal vibronic notation, written for

a single active mode. If more than one mode is Jahn± Teller active, v should be

replaced by a product over all vi and l should be replaced by lt.) This choice of basis

set is often made for solving the rotational problem because, once the rotational

quantum numbers have been added, the size of the eŒective Hamiltonian matrix

is decreased by a factor of two over the matrix that would be created using only

equation (74) [61] .

There are several limitations of this approach that need to be addressed. First,

higher-order terms (k > 2) in the Hamiltonian have been neglected to make the

problem manageable. Quadratic Jahn± Teller terms that involve only a single mode

have been included in these calculations, while the term ÃH q ij involves coupling
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460 T. A. Barckholtz and T. A. Miller

between two diŒerent Jahn± Teller active modes has not. Likewise quadratic or

bilinear coupling between Jahn± Teller and symmetric modes has not been included.

However, these inter-mode quadratic oŒ-diagonal elements are expected to be small,

provided that the intra-mode quadratic coupling of equation (71) is reasonably

small. In all the molecules investigated to date, there has been no spectral evidence

to support the inclusion of inter-mode quadratic coupling, or other higher order

Jahn± Teller terms.

We have also included in the computer program that we have written for the

diagonalization a diagonal matrix element that accounts for the anharmonicity of

the modes. As is the case for the inter-mode quadratic Jahn± Teller terms, the spectra

for most molecules studied so far have not been complete enough to necessitate the

inclusion of vibrational anharmonicity. Anharmonic terms become more important

at higher internal energies, which are typically not observed or assigned in the spectra

of Jahn± Teller molecules. The last de® ciency in our approach is the truncation of

the basis set to a ® nite size for the numerical computation. As mentioned earlier,

this problem can be overcome by iterating the calculations with an increasing basis

set, converging the calculated energies to a speci® ed precision.

2.6. Isotopic substitutions

An intriguing area of inquiry, which we shall not discuss in detail, is the eŒect of

isotopic substitution on the vibronic energy levels of a Jahn± Teller state. In sections

6.2.2 and 6.2.4 we present the analyses of the spectra of CH3S± CD3S and CH3O±

CD3O respectively, for which relatively straightforward connections between the

Jahn± Teller coupling constants exist. What happens in the case of partial isotopic

substitution? This is an extremely interesting question and one for which a complete

answer has not yet been provided.

Partial isotopic substitution of a symmetric top molecule will lower the point

group symmetry of the molecule. The result on the Jahn± Teller energy levels will

be to shift and split them in a complicated way. Although the nominal point

group of the molecule will be lower than the unsubstituted molecule, the entire

electronic PES in which the vibronic energy levels are eigenfunctions will still be

one of those in ® gure 2, assuming that the change in the nuclear isotopes has a

negligible eŒect on the electronic surface. The PES will still not be a harmonic

surface and corrections to the harmonic oscillator energy levels and their prop-

erties will still need to be made. Only a few initial attempts have been made

in this area [14, 62± 64] . This eŒect has been observed in the esr spectra of the

benzene-1-d anion [65] and the cyclooctatetraene-1-d anion [66] , the absorption

spectra of several asymmetrically deuterated benzene cations [63, 64] and the ¯ u-

orescence spectra of the asymmetric isotopomers of the cyclopentadienyl radical

[14].

It might be expected that one would have to be a terri® c chemist to carry

out successfully an experiment on a partially isotopically substituted Jahn± Teller

molecule. However, we point out that, in an electronic transition, the isotope shift

of the transition will be signi® cant and will serve to separate the vibronic levels.

In particular, if rotationally resolved spectra can be obtained, the rotational energy

levels will clearly distinguish between the isotopomers [14] . In this way the istopomers

can be separated spectroscopically, rather than chemically. An alternative is to use

a mass-selective technique, such as resonance-enhanced multiphoton ionization or

an ion beam technique, to separate the diŒerent isotopomers. We hope that in the

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantitative insights about molecules exhibiting Jahn± Teller eŒects 461

future more experiments will be done and more theoretical developments carried

out on this fascinating possibility. Although the theory will be fairly complicated (on

top of the already complicated Jahn± Teller theory of an unsubstituted molecule),

isotopic substitution oŒers a way to derive a great amount of information about the

state and its Jahn± Teller and spin± orbit coupling.

2.7. General considerations

A completely legitimate question to ask at this point is the following: if the Jahn±

Teller eŒect distorts the molecule away from its symmetric con® guration, how can

a satisfactory analysis ever be obtained from a symmetric starting point, using the

parameters of equations (14)± (16)? While linear and quadratic Jahn± Teller coupling

both distort the molecule away from its symmetric con® guration, it is imperative to

remember that the entire PES maintains the symmetry of the point group. Therefore,

only a Hamiltonian of the point group of the entire PES can adequately describe the

molecule. A Hamiltonian appropriate for the point group of the distorted molecule is

wholly inadequate to describe an experiment wherein the molecule exhibits behaviour

consistent with it not being con® ned to a local minimum of the distorted surface. In

fact, if a rotationally resolved spectrum of a Jahn± Teller molecule can be successfully

analysed using a symmetric top Hamiltonian, then it has been experimentally proven

that the Jahn± Teller coupling, if any, is not large enough to distort the molecule

p̀ermanently’, that is to localize it to a distorted minimum on the time scale of

molecular rotation. A generally easier test to accomplish experimentally is that, if

a spin± orbit splitting can be resolved, then the molecule must be analysed using

a symmetric top Hamiltonian, for the existence of ùnquenched’ orbital angular

momentum implies the molecule is not localized at a geometry away from the

symmetric position. If a spin± orbit splitting is not observed, the molecule may or

may not still be symmetric, see, for example, the high resolution study of C5H5,

where the spin± orbit splitting was too small to measure, but a Jahn± Teller eŒect

on the rotational and vibrational energy levels was clearly resolvable, implying a

dynamic Jahn± Teller eŒect [14] .

When the Jahn± Teller eŒect becomes so large that the molecule is statically

(permanently) distorted, a diŒerent approach may become useful in the spectro-

scopic analysis. In this case, the molecule is distorted to lower symmetry, typically

Cs symmetry, and the normal, approximately harmonic oscillator energy levels are

recovered, although using vibrational constants for a distorted rather than a sym-

metric molecule. If the molecule is not permanently distorted but close to that limit,

it may still be more suitable to use a vibronic Hamiltonian for a distorted molecule,

and add correction terms to it rather than starting with the symmetric Hamiltonian

and correcting for Jahn± Teller coupling.

When does this cross-over point occur? It has often been stated that a static

Jahn± Teller eŒect, that is the molecule is permanently distorted on the time scale

of the experiment, occurs when the zero-point energy levels falls below the energy

of the symmetric point, which occurs when Di * 1. The opposite case, when Di is

less than unity, has been referred to as the dynamic Jahn± Teller eŒect. (Recall that

the cusp of the PES is de® ned as the zero of energy and that for a two-dimensional

harmonic oscillator potential, the zero point level for a degenerate mode is at an

energy of x e,i.) This nomenclature is deceiving in that, while the zero point level of

the molecule might fall below the symmetric cusp, there may still be little or no
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462 T. A. Barckholtz and T. A. Miller

barrier to pseudo-rotation about the moat (see ® gures 1(b) and 2(b)). If the quadratic

Jahn± Teller coupling constants are large, a barrier to pseudo-rotation is created, and

the molecule can become trapped in a distorted well. It is likely, however, that a large

linear Jahn± Teller eŒect will be accompanied by a large quadratic Jahn± Teller eŒect

that will produce a static distortion of the molecule. It is therefore convenient to

retain the nomenclature of a static Jahn± Teller eŒect for Di * 1, while for Di < 1 it

implies a dynamic case. It should be remembered, however, that no such relationship

is quantitatively implied for the corresponding g̀eometric structure’.

2.8. Computational details

A Fortran90 computer program has been written to calculate the energies and

wavefunctions of a molecule described by the Hamiltonian of equation (9), excluding
ÃH rot. The program can handle an arbitrary number of active modes and the

truncation of the basis set is limited only by available memory and computer time.

Currently, the program runs on a Cray T90, however, transfer of the code to smaller

workstations and personal computers is in progress. A complete description of the

computer program will be given elsewhere [67] . It is this program that has provided

the numerical results presented in the remainder of the paper.

3. Vibronic energy levels for C3v m olecules with spin ± orbit

and Jahn± Teller coupling

In section 2 we developed a fairly general theory for the Jahn± Teller eŒect,

including those molecules that also exhibit signi® cant spin± orbit coupling. The main

purpose of this section is to demonstrate, via the results of numerical calculations

for a model C3v system, how the various interaction terms in the Hamiltonian give

rise to particular energy level patterns and ultimately the corresponding spectra.

While there exists an extensive body of work on Jahn± Teller coupling, and

calculations of vibronic energy levels for linear and quadratic Jahn± Teller eŒects

are not new, numerically accurate calculations including spin± orbit coupling have

been much rarer. Before presenting a detailed discussion of the eŒect of spin± orbit

coupling on the Jahn± Teller problem, it is instructive to review the results of Jahn±

Teller calculations in the absence of spin± orbit coupling. Many other workers have

investigated this problem, and the presentation here is a distillation of the most

important properties from those investigations.

3.1. Qualitative considerations

3.1.1. Linear Jahn± Teller coupling

Figure 3 illustrates several properties of the vibronic energy levels of a 2E state

of C3v symmetry. The ® rst item to be taken from ® gure 3 is the symmetries of the

various levels, as symmetry has a tremendous impact on the spectroscopy. Under

linear Jahn± Teller coupling, the levels that had been degenerate in the harmonic

oscillator are split and can be diŒerentiated by their vibronic symmetry (® gure 3(b)).

Those levels with j = ± 3
2

are of a1 and a2 symmetry while those with j = ± 1
2

or ± 5
2

are of e symmetry.† Note that the ± 3
2

levels are not degenerate by the symmetry of

† From here on we shall drop the somewhat burdensome notation of ± 1

2
+ 3n ,

± 3

2
+ 3n , etc., and refer to these groups of states by the lead fraction,

1

2
,

3

2
, or

5

2
.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantitative insights about molecules exhibiting Jahn± Teller eŒects 463

Figure 3. Qualitative energy level scheme of the vibronic energy levels of a 2 E state under
C3v symmetry, with a single Jahn± Teller active mode, for the following Hamiltonians:

(a) ÃH h,e , (b) ÃH h ,e + ÃH l , (c) ÃH h ,e + ÃH l + ÃH qii , (d) ÃH h ,e + ÃH l + ÃH q ii + ÃH SO , (c ¢ )
ÃH h ,e + ÃH SO + ÃH l , (b ¢ ) ÃH h ,e + ÃH SO , (a) ÃH h,e . The far left and far right columns are

identical. Column (d) is a representative ordering of the energy levels when linear and
quadratic Jahn± Teller coupling and spin± orbit coupling is included in the calculation.

The left-hand side of the diagram derives the energy levels of (d) via addition of the
Jahn± Teller terms and then spin± orbit coupling, while the right-hand side takes the

opposite approach. They do, however, have a common result in (d). The symmetry
labels for (a)± (c) correspond to the irreducible representations of the C3v group while

those for (b ¢ ), (c ¢ ) and (d) are for the double group of C3v .

the C3v point group, they are degenerate because no term in the linear Jahn± Teller

Hamiltonian raises the degeneracy.

3.1.2. Quadratic Jahn± Teller coupling

Quadratic Jahn± Teller coupling has two eŒects on the linear Jahn± Teller coupling

energy levels ( ® gure 3(c)). First, quadratic coupling, which causes the j = ± 1
2
, ± 5

2
, . . .

levels to mix with the j = 7 5
2
, 7 1

2
, . . . levels, reduces the symmetry blocking of the

Hamiltonian matrix to only three subblocks. However, by symmetry, the degeneracies

of neither the j = ± 1
2

nor the j = ± 5
2

levels are lifted by ÃH qii . The second, and

larger, eŒect of quadratic coupling is to break the degeneracy of the j = ± 3
2
, ± 9

2
, . . .

levels into their a1 and a2 components. To gauge the magnitude of these two eŒects, a

quadratic Jahn± Teller coupling constant K i of 0.05 shifts the lowest several j = ± 1
2

and 7 5
2

levels by less than 5 cm 1 each, while it splits the lowest ± 3
2

level by

25 cm 1 .† While quadratic Jahn± Teller coupling makes a small contribution to the

† This calculation was done with x e,i = 250 cm 1 and Di = 0.5.
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464 T. A. Barckholtz and T. A. Miller

Figure 4. Schematic representation of the matrix elements of ÃH qii , equation (71), D vi = ± 2

(dotted arrows) and D vi = 0 (solid arrows). The energy levels are shown for the
case of linear Jahn± Teller coupling for a single vibrational mode. Arrows are drawn

between energy levels that are connected via an oŒ-diagonal matrix element of ÃH q ii .

Additional matrix elements of ÃH qii exist between the v = 1 and v = 3 levels, and
between the v = 2 and v = 4 levels, they are not shown for clarity.

stabilization of the molecule (equation (56)), it can have a huge impact upon the

vibronic energy levels, as Hougen [68] ® rst pointed out.

The reason for the disparity in the size of the eŒect of quadratic coupling on

the levels is easily understood by examining the three oŒ-diagonal matrix elements

of ÃH q ii (equation (71)) using perturbation theory (® gure 4). The matrix elements of

equation (71) with D vi = ± 2 ensures that the energy separation connecting these

levels is comparable with twice the harmonic oscillator vibrational frequency of the

mode. These two terms are responsible for mixing the j = ± 1
2

and 7 5
2

levels with

each other and for a minor portion of the splitting of the ± 3
2

levels. The matrix

element of ÃH qii , with a selection rule on vi of D vi = 0, will have non-zero values

between two j = ± 3
2

levels that are degenerate under linear Jahn± Teller coupling.

Because the energy diŒerence between the two levels connecting these oŒ-diagonal

elements is zero, a very small coupling constant K i can produce a large splitting.
ÃH qii will also have matrix elements between the j = ± 1

2
and 7 5

2
levels that arise

from the same harmonic oscillator level and are therefore close in energy, but not

degenerate like the j = ± 3
2

levels. The eŒect of the matrix element on these levels

will therefore be smaller than the eŒect it has on the j = ± 3
2

levels, but larger than

the eŒects of the matrix elements with D vi = ± 2.

We mentioned before that the sign of K i has an eŒect on the positions of the

local minima and maxima around the moat. The sign of K i also has an eŒect on

the a1 and a2 levels. If the sign of K i is reversed, the energies of the a1 and a2

levels will be reversed. If the symmetries of these j = 3
2

levels can be determined

experimentally, then the phase of the minima and maxima of the PES has also been

determined.

3.1.3. Spin± orbit coupling

The addition of spin± orbit coupling at ® rst glance appears to double the number

of levels, splitting each of them into two spin± orbit components (® gure 3(d)). While
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this is true for all the j = ± 1
2

and ± 5
2

levels, it is not true for the ± 3
2

levels. The

± 1
2

and ± 5
2

levels are of e symmetry under the C3v point group. For an S = 1
2

system, the spin function belongs to the e1/ 2 irreducible representation of the C3v

spin double group [37, 35]. For the C3v point group, the direct product of the spin

function and an e vibronic function is e1/ 2  e = e1/ 2 + e3/ 2 , which shows that each

of the ± 1
2

and ± 5
2

levels is split into two levels. In ® gure 3, the a1 and a2 levels

derived from j = ± 3
2

levels are not shown to be split by spin± orbit coupling. This

apparent lack of spin± orbit coupling in these levels is because in the absence of

spin± orbit coupling the levels are of a1 and a2 symmetry, which when multiplied

by the spin function give only e1/ 2 symmetry. Neither of them can therefore, by

symmetry, be split by spin± orbit coupling. However, since the two levels are of the

same symmetry under the spin double group, they may be mixed with each other

by spin± orbit coupling, causing some levels to shift upon the addition of spin± orbit

coupling to the Hamiltonian. If, on the other hand, the quadratic Jahn± Teller eŒect

is su� ciently small to render the a1 and a2 levels degenerate, then the eŒect of

signi® cant spin± orbit coupling will be to split the quasidegenerate a1 ± a2 pair in

much the same way as it splits the e levels. The exact eŒects caused by spin± orbit

coupling on these levels are determined by the relative sizes of the linear, quadratic

and spin± orbit coupling constants, and will be discussed in the next section.

Two other features of the spin± orbit levels need to be pointed out. First, the

relative ordering of the two spin± vibronic components e X ¢ ( X ¢ = | X mod 3|), of each

j = ± 1
2

and ± 5
2

pair will be reversed if the sign of a is changed (see equations

(18) and (69)). The symmetry labels of the spin± orbit levels of ® gure 3 are for

the case when a < 0, which is appropriate for all the methoxy radicals. Second,

the relative ordering of the two X ¢ components alternates within a given manifold

of j as the energies increase. (This is only strictly true for the case of a single

active mode without quadratic coupling.) For example, the lowest j =
1
2

spin± orbit

doublet (nominally corresponding to vi = 0) has the e3/ 2 spin± vibronic level lower

in energy than the e1/ 2 level, while for the next higher energy doublet, arising

from the vi = 1 harmonic oscillator level, e1/ 2 is lower in energy than e3/ 2 .† This

alternation of symmetry will cause the two components of a spin± orbit doublet to

have diŒerent spin± vibronic wavefunctions, whereas they are normally assumed to

have eŒectively identical vibronic wavefunctions, with opposite values for S . As

we shall see in later sections, the diŒerences in the wavefunctions means that the

two spin± orbit components will have diŒerent Coriolis coupling constants as well

as diŒerent intensities in the electronic spectra. Understanding the spin± vibronic

wavefunctions is very important in the interpretation of the experimentally observed

spectra.

The discussion above has progressed across ® gure 3 from left to right, ® rst linear

Jahn± Teller coupling is introduced, then quadratic Jahn± Teller coupling is added,

with the ® nal addition being spin± orbit coupling. This is a useful way to derive

the energy levels when spin± orbit coupling is small. If, however, spin± orbit coupling

is large and dominates the Jahn± Teller coupling, it may be more useful ® rst to

† Here, we refer to the spin± vibronic symmetry e1/ 2 or e3 / 2 , which can often be experimen-

tally determined from the rotational spectrum. This is not to be confused with the symmetry

of the spin± electronic states 2E1/ 2 and 2E3/ 2 , which correspond to when ÃLz and ÃSz are

antiparallel and parallel to each other respectively.
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466 T. A. Barckholtz and T. A. Miller

Figure 5. Absolute energies of the vibronic levels for linear Jahn± Teller coupling in a single

active mode over the range from Di = 0 to Di = 0.5. The ordinate scale is in units
of x e,i while the abscissa is the dimensionless linear Jahn± Teller coupling constant Di .

The dotted lines are the energies calculated via the approximation of equation (78).
The labels on the lines refer to j . Levels with diŒerent j may cross, since with only

linear Jahn± Teller coupling there are no terms in ÃH that connect diŒerent j states.

add spin± orbit coupling to the harmonic oscillator, followed by linear Jahn± Teller

coupling and quadratic Jahn± Teller coupling, as the right-hand side of ® gure 3

shows. Either way, the vibronic energy levels of the central column of ® gure 3 are

the same but, depending upon the situation, one or the other thought process used

to derive them may be more pedagogical.

3.2. Quantitative calculations of the vibronic energy levels

3.2.1. Linear Jahn± Teller coupling

As usual in quantum mechanics, the quanti® cation of the energies for a Jahn±

Teller system must come from the diagonalization of the entire matrix. The ordering

of the energy levels is a complex function of the various coupling constants. For

linear and quadratic coupling, the results have been presented previously in many

places. Approximate formulae have also been presented previously to estimate the

spin± orbit splitting of each level, without explicitly including a spin± orbit term in

the Hamiltonian. We shall ® rst review this work and then evaluate it from the

perspective of the inclusion of spin± orbit coupling directly in the Hamiltonian.

Figures 5 and 6 show the calculated linear Jahn± Teller coupling vibronic energy

levels for two diŒerent regimes of Di. Each of them show that, at small values

of Di, oscillations of the energy levels make generalizations about the patterns

di� cult. However, simple formulae for the limiting cases of very small and very

large Jahn± Teller coupling have been derived previously using perturbation theory.

In the limit of small Jahn± Teller coupling, Child [69] used second-order pertur-

bation theory to derive the energy levels of a single Jahn± Teller active mode:

E (vi, li) = x e,i (vi + 1) 7 2Di x e,i (li ± 1) . (78)
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 467

Figure 6. Absolute energies of the vibronic levels for linear Jahn± Teller coupling in a single

active mode over the range from Di = 0 to Di = 2.0. The ordinate scale is in units of
x e,i while the abscissa is the dimensionless linear Jahn± Teller coupling constant Di .

Figure 7. Relative energies of the vibronic levels for linear Jahn± Teller coupling in a single

active mode over the range from Di = 0 to Di = 10.0. The ordinate scale is in units
of x e,i while the abscissa is the dimensionless linear Jahn± Teller coupling constant Di ,

with the zero of energy set as the energy of the lowest level. On the right-hand side
the energy levels are labelled |u i , j ñ , equation (79). The dotted lines are the energies

calculated via the approximation of equation (79).
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Under small Jahn± Teller coupling, the harmonic oscillator energy levels are split

according to their values of li, with each value of li giving rise to two levels, except

for li = 0. Child proposed that this formula is a reasonably good formula up to

Di & 0.05, which is a very small value for a Jahn± Teller coupling constant. In

® gure 5, we compare the validity of equation (78) against numerical calculations.

For the lowest few levels, equation (78) is a reasonably good approximation up to

approximately Di = 0.1, while at higher energies the approximation is valid only

for smaller values of Di. Despite its shortcomings, the use of equation (78) may

be a good starting point for a more complete analysis even in a system that has a

relatively large value of Di.

Figure 7 shows that, as Di increases, the vibronic energy levels converge to the

strong coupling limit, where ultimately the energies can be described well by the

formula [31]

E (ui, j ) = Di x e,i + (u i + 1
2
) x e,i +

x e,ij
2

4Di

, (79)

where a new quantum number u i has been introduced that can take any non-negative

integer value, independent of j . From ® gure 7, it can be seen that this formula holds

true only for large values of Di. Physically this situation corresponds to an uncoupled

stretching motion along the radial coordinate q i of equation (12), characterized by the

quantum number ui, while the continuously good quantum number j characterizes

the unhindered pseudo-rotation motion in the angular coordinate u i.

Between these two limits, one must resort to the exact calculation of the energy

levels using the complete Hamiltonian and a large basis set, as shown in ® gures 6

and 7. Figure 7 is a more useful diagram when examining the spectroscopy of these

levels. Because the lowest energy vibronic level, denoted 1
2
, 1, e in the notation

of equation (75), is the zero-point energy level of the molecule, the diŒerences

between its energy and the other energy levels will be the energies measured in

spectroscopic experiments. In particular, two common techniques, laser-induced

¯ uorescence (LIF) and infrared absorption, most often observe the second j =

± 1
2

level ( 1
2
, 2, e , ® gure 7). The energy diŒerence between these two levels is

the fundamental transition frequency x 0,i of the vibrational mode. However, as

® gure 7 shows, this energy diŒerence will be greater than the equilibrium vibrational

frequency x e,i. This holds true even when spin± orbit coupling is included in the

calculation, provided that the spin± orbit coupling splitting of the electronic potential

is not larger than the harmonic frequency of the vibrational mode. The diŒerence

between the two frequencies x e,i and x 0,i is governed by the magnitude of Di. In

many published papers of the spectroscopy of Jahn± Teller active states, x 0,i is given

as the vibrational frequency of the Jahn± Teller active modes. In the limit of very

weak Jahn± Teller coupling, x 0,i and x e,i will be comparable with each other, but

® gure 6 shows that even a relatively small Di can cause x 0,i to be greater than x e,i by

25% or more. A true description of the vibrational structure of a Jahn± Teller active

molecule must include both x e,i and Di. While the value of x 0,i is useful, by itself it

is not an accurate representation of the vibrational potential of the molecule.

3.2.2. Linear Jahn± Teller coupling with spin± orbit coupling

Nearly all Jahn± Teller calculations in the literature have added spin± orbit

coupling to the linear Jahn± Teller Hamiltonian àfter the fact’ via a formula initially

derived by Child and Longuet-Higgins [31]. The formula is derived by taking the ex-
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pectation value of ÃH SO for the vibronic eigenfunction, computed without including
ÃH SO in the Hamiltonian:

á S | á j , n j , a | ÃH SO |j , n j , a ñ | S ñ = á S | á j , nj , a | a ÃLz
ÃSz |j , n j , a ñ | S ñ

= S á j , n j | a ÃLz |j , n j ñ

= S
i

ci,nj á L i |
p

m= 1

á vm,i, lm,i | a ÃLz

3
i ¢

ci ¢ ,nj | L i ¢ ñ
p

m= 1

|vm,i ¢ , lm,i ¢ ñ

= S
i

c
2
i,n j

á L i| a ÃLz | L i ñ

= S
i

a f e L ic
2
i,nj

= a f ed j ,n j S , (80)

where dj ,n j = i L ic
2
i,n j

. The parameter d j ,n j is often called the Ham [29, 59] reduction

factor and is usually not given with subscripts. However, because each vibronic level

has a unique value of d, we feel that it is appropriate to assign subscripts to this

parameter to identify the eigenfunction to which it corresponds. The values that d j ,nj

may take range from 1 to + 1, corresponding respectively to the limits L = 1 and

L = + 1, and are strongly dependent on the vibrational parameters of the system.

These limits are reached for zero Jahn± Teller distortion, because in that case only

one c i,nj is non-zero and hence must be unity. For a large Jahn± Teller eŒect the sum

of the squares of the coe� cients for L = + 1 will be approximately equal to those

for L = 1, and hence d j ,n j approaches zero.

The approximate spin± orbit splitting D E SO
j ,n j

of the n j th energy level of the j th

symmetry block is

D E
SO
j ,nj

= E j ,nj ,S = + 1/ 2 E j ,n j ,S = 1/ 2 = a f edj ,n j . (81)

There are several key features to be gleaned from equations (80) and (81). First,

d j ,nj is always less than unity so that spin± orbit coupling is always quenched to

some extent by the presence of linear Jahn± Teller coupling. (However, when there

is non-zero quadratic Jahn± Teller coupling, the apparent spin± orbit splitting can

appear for some levels to not be quenched, or even enhanced, as will be discussed

in the next section.) Second, each and every vibronic energy level has a diŒerent

spin± orbit splitting. While a f e is the product of two molecular parameters for the

given electronic state, dj ,nj is diŒerent for each vibronic energy level. In general,

as j and nj increase, the magnitude of d j ,nj decreases and the spin± orbit splitting

is quenched. Likewise, as the Jahn± Teller mixing increases, Di increases and the

magnitude of d j ,nj decreases for all the energy levels and the spin± orbit coupling is

decreased by Jahn± Teller coupling.

Under linear Jahn± Teller coupling only, every vibronic energy level is doubly

degenerate, with the two components diŒering by the sign of j . The two j components

diŒer in the signs of li, L and S for each basis function (equation (76)) but, because

of their degeneracy, they will have identical expansion coe� cients ci,n j ,S = ci,n j , S .

Therefore, if one component has the quenching parameter dj ,n j , it follows from

equation (80) that the quenching parameter d j ,n j , for the other component will be
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470 T. A. Barckholtz and T. A. Miller

equal in magnitude but opposite in sign:

d j ,nj = d j ,n j . (82)

Because the degeneracy of the levels is independent of the magnitude of the coupling

constants, we shall restrict our discussion to only one of the components of the

degenerate energy level and assume j to be positive.

If only a single mode is Jahn± Teller active, the sign of d j ,nj alternates with nj for

a given value of j . (This result follows from the fact that, since l = j L / 2 for C3v

symmetry and the allowed values of l change from even to odd with alternating n j , L
must change sign to preserve j .) According to equation (81), if d j ,n j changes sign, the

spin± orbit splitting D E j ,nj must change sign, as a f e is a constant, and the spin± orbit

doublet will be inverted. Therefore, the sign of d j ,n j is re¯ ected in the ordering of

the symmetries of the spin± orbit doublet, that is whether the e1/ 2 component or the

e3/ 2 component is lower in energy (® gures 3(d) and (b ¢ )), consistent with our earlier

comment that the ordering of the X components alternate with j . Experimentally,

the symmetry of each component of the spin± orbit doublet can be determined if

the rotational levels have been resolved. The symmetry label e X ¢ (which for the

present case is e1/ 2 or e3/ 2) is derived from the value of X = L lt + S (for the

present case, | X mod 3| = X ¢ ). The X̀ ¢ ’ of e X ¢ is the minimum value that J may have

for a given spin± vibronic state (see section 4 for more details about the rotational

quantum numbers and energy levels). Simulation of the Q and R branches of a

rotationally resolved spectrum will clearly distinguish between the value of Jmin ,

and therefore X ¢ , for the level. (Even when full rotational resolution is not achieved,

the r̀otational contours’ may su� ce to distinguish the e1/ 2 and e3/ 2 components

because the Coriolis coupling of the two components may be quite diŒerent as well

as have distinctive intensity patterns.) Because of the alternation of the sign of d j ,nj ,

the v = 0 spin± orbit doublet will have e1/ 2 lower in energy than the e3/ 2 component

for a > 0, while the v = 1, j = 1
2

doublet will have the reverse. An example of this

inversion of the spin± orbit doublet is the rotationally resolved spectra of the origin

and 61 bands of the A 2E Ö X 2A1 transition in MgCH3 [70] .

In the limit of small linear Jahn± Teller coupling, Child [69] used perturbation

theory to derive simple formulae for the estimation of d j ,n j for a single Jahn± Teller

active mode:

d j ,nj = 7 1 ± 4Di (vi + 1) for j = li 7 1
2
. (83)

Even at a very small value of Di = 0.05, d1/ 2,1 has already decreased to 0.8 from 1, its

value in the absence of Jahn± Teller coupling. This means that molecular spin± orbit

coupling has been reduced to 80% of what its value would be in the absence of

Jahn± Teller coupling, even though the Jahn± Teller eŒect has stabilized the molecule

by only 0.05 x e,i. It should be emphasized that equation (83) is only valid in the limit

of small linear Jahn± Teller coupling, and in the absence of any quadratic Jahn±

Teller coupling. Nonetheless, it clearly indicates how rapidly even small geometric

distortions caused by Jahn± Teller eŒects can quench the spin± orbit splittings.

With the inclusion of spin± orbit coupling directly in the Hamiltonian, we are

now in a position to address the accuracy of equation (81) for the spin± orbit

splitting of the vibronic levels of a Jahn± Teller system. Figure 8 shows the calculated

energy levels from the diagonalization of the full spin ± vibronic Hamiltonian. At

relatively small values of a f e , the approximation of equation (81) is reasonably

good, as shown by the dotted lines in ® gure 8. However, as a f e is increased, the
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Figure 8. Calculated absolute energy levels for a 2 E state of C3v symmetry including linear

Jahn± Teller coupling and spin± orbit coupling for a single Jahn± Teller active mode

for values of a f e < x e . The solid lines are energy levels calculated including ÃH SO in
the Hamiltonian while the dotted lines are those calculated using equation (80). The

energy levels were calculated assuming Di = 0.25 and x e,i = 100 cm 1 and varying

a f e . Note that if X mod 3 = ± 1

2
, the basis function transforms as e1/ 2 , otherwise it

transforms as e3/ 2 .

necessity of performing the complete calculation becomes clear as the deviations

between the approximation and reality become large as ® gure 9 shows. The reason

for the deviation is obvious from ® gure 9, the addition of spin± orbit coupling to

the Hamiltonian properly describes the avoided crossings of states of the same

symmetry under the spin double group. As spin± orbit coupling begins to quench

the Jahn± Teller coupling (the right-hand side of ® gure 9), the vibrational spacings

of a harmonic oscillator for a pair of 2E3/ 2 and 2E1/ 2 electronic states begin to be

recovered. Note, however, that Jahn± Teller coupling still has two signi® cant eŒects

on the energy levels: the vibrational spacing has yet to recover its harmonic value

(100 cm 1 in this example) and the individual vi levels are still split according to

their li values, much as they are in the absence of spin± orbit coupling.

The energy levels are plotted in ® gure 10 relative to the energy of the lowest

level, which makes it a more useful ® gure for spectroscopy. Figures 9 and 10 clearly

show that the quantitative calculation of the spin± vibronic energy levels must be
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472 T. A. Barckholtz and T. A. Miller

Figure 9. Calculated absolute energy levels for a 2 E state of C3v symmetry including linear
Jahn± Teller coupling and spin± orbit coupling for a single Jahn± Teller active mode for

values of a f e < x e to a f e > x e . The solid lines are energy levels calculated including
ÃH SO in the Hamiltonian while the dotted lines are those calculated using equation (80).

The energy levels were calculated assuming Di = 0.25 and x e,i = 100 cm 1 and varying

a f e . Note that if X mod 3 = ± 1

2
, the basis function transforms as e1 / 2 , otherwise it

transforms as e3/ 2 .

done with the entire spin± orbit Jahn± Teller Hamiltonian. This also means that

the eigenfunction must be calculated using a basis set of the form of equation

(74) rather than equation (75). The most important rami® cation of the change

in the wavefunctions is that the two components of a spin± orbit doublet may

be signi® cantly diŒerent using the basis of equation (74). Figure 11 illustrates

how this may happen in the case of linear Jahn± Teller coupling with spin± orbit

coupling. Because of the alternation of the symmetry of the levels under the spin-

double group, the two spin components will have signi® cantly diŒerent Jahn± Teller

couplings. Therefore, the spin± vibronic wavefunctions will be quite diŒerent. We

shall see in later sections that the diŒerent vibronic characters of the two spin± orbit

components of a level causes intensity variations between them in electronic spectra

as well as causing them to have diŒerent eŒective rotational parameters.

In ® gures 9 and 10, and in all the ® gures so far, avoided crossings of the levels

are a dominant feature. However, there are also a large number of allowed crossings
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Figure 10. Calculated relative energy levels for a 2 E state of C3v symmetry including linear
Jahn± Teller coupling and spin± orbit coupling for a single Jahn± Teller active mode.

The solid lines are energy levels calculated including ÃH SO in the Hamiltonian while

the dotted lines are those calculated using equation (80). The energy levels were
calculated assuming Di = 0.25 and x e,i = 100 cm 1 and varying a f e . Note that if

X mod 3 = ± 1

2
, the basis function transforms as e1/ 2 , otherwise it transforms as e3/ 2 .

of the levels. Of signi® cant importance is whether a crossing will be allowed or

avoided. In the Hamiltonian, limited to only linear Jahn± Teller coupling that we

have considered so far, there are two good quantum numbers j and S . Two levels

will be allowed to cross as long as they diŒer in at least one of these quantities.

When quadratic Jahn± Teller coupling is present, two levels will be allowed to cross

as long as they diŒer in at least one of the quantities (j and j (2) ) or S .

3.2.3. Quadratic Jahn± Teller coupling with spin ± orbit coupling

As mentioned earlier, modest quadratic Jahn± Teller coupling has a minor eŒect

on most of the levels but a large eŒect on the j = ± 3
2

levels (® gure 12). Quadratic

Jahn± Teller coupling breaks the degeneracy of the ± 3
2

levels into two components,

one each of a1 and a2 symmetry. Spin± orbit coupling does not further split these, as

discussed previously, but instead mixes them together and shifts them (® gures 12(b)

and (c)). The amount of mixing can be ascertained by examination of the calculated

wavefunctions for each level. In the absence of spin± orbit coupling, the two leading
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Figure 11. Illustration of the non-vanishing matrix elements of the linear Jahn± Teller Hamil-

tonian, ÃH
(1)

JT , when the spin± orbit coupling contribution, ÃH SO , is included. For sim-

plicity, only the j = +
1

2
levels from v = 0 and v = 1 are shown and a f e is assumed to

be negative.

terms in the wavefunctions |j , n j , a ñ | S ñ of the two lowest levels are

3
2
, 1, a2 | S ñ = |a2 ñ = c1 {|11 ñ |+ ñ |1 1 ñ | ñ } + c2 ´ ´ ´ | S ñ (84)

and

3
2
, 1, a1 | S ñ = |a1 ñ = c1 {|11 ñ |+ ñ + |1 1 ñ | ñ } + c2 ´ ´ ´ | S ñ . (85)

After spin± orbit coupling is introduced, the two wavefunctions can be described to

a good approximation by

3
2
, 1 | S ñ = c ¢

1 |a2 ñ + c ¢
2 |a1 ñ | S ñ (86)

and

3
2
, 1 | S ñ = c ¢

1 |a2 ñ c ¢
2 |a1 ñ | S ñ . (87)

These equations are valid if the mixing is caused by the D vi = 0 perturbation of

equation (71) only. If the other two matrix elements of ÃH qii mix in appreciable

amounts of other levels, as will happen with larger values of K i, then equations

(86) and (87) begin to break down. The relative value of the squares of c ¢
1 and

c ¢
2 , which can be obtained from the computed wavefunction, gives the percentage

composition of each of the spin± orbit components of the ± 3
2

levels. Figures 12(b)

and (c) show the results of these calculations for an example system. Note that,

although the energies of 3
2
, 1, S and 3

2
, 1, S levels change as a f e increases, the

diŒerence between their two energies remains relatively constant, but the a1 and a2

character of each changes signi® cantly, approaching equal admixtures at large a f e .

3.2.4. Mode mixing

While the Jahn± Teller Hamiltonian (13) does not include any oŒ-diagonal matrix

elements that are non-diagonal in more than one mode, Jahn± Teller coupling does

mix the levels of each active mode with the others. Figure 13 illustrates how, for

a two-mode case, the v1 = 1 level is mixed with the v2 = 1 level, even though all

matrix elements directly connecting them are zero. They each have non-zero matrix

elements with the vibrationless level (v1 = v2 = 0), and with the v1 = v2 = 1 level.
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Figure 13. Illustration of the matrix elements, represented by the arrows, that connect the
vi = 1 level with vi ¢ = 1. The level with vi = vi ¢ = 1 is degenerate and both of its

components are shown to illustrate the matrix elements. For convenience, only the
j =

1

2
levels are shown.

Therefore, the Jahn± Teller coupling of one mode indirectly aŒects the energy of the

other level. While this eŒect has been illustrated for the v1 = v2 = 1 levels, it exists

for all levels.

The impact of mode mixing on the calculation of the vibronic energy levels

can be signi® cant for even modest Jahn± Teller eŒects. Table 4 shows the eŒects

of including two vibrational modes in a single multi-mode calculation. The ® rst

two pairs of columns are the results of two independent single-mode calculations,

with x e,1 = 300 cm 1, D1 = 0.25, x e,2 = 500 cm 1 and D2 = 0.25. The third pair

of columns are the energies of these levels from these two calculations and their

combinations. For comparison, the ® nal two columns contain the energy levels

calculated when both modes are included in the basis set. The most signi® cant

result from these calculations is that mode mixing changes the energies enough to

necessitate the inclusion of both modes in the calculation simultaneously. As the

Jahn± Teller coupling of any of the modes increases, the eŒects of mode mixing

will also increase. In the example in table 4, errors as great as 73 cm 1 are seen

in the two single-mode calculations compared with the exact two-mode calculation

while the rms error is 26 cm 1, clearly non-trivial amounts. Therefore, if there is

more than one Jahn± Teller active mode in the molecule, one must do a multimode

calculation if the energies of the system are to be calculated properly. Furthermore,

if spin ± orbit coupling is not negligibly small, a multimode calculation including

spin± orbit coupling in the Hamiltonian must be performed if spectroscopic accuracy

is hoped to be achieved with the calculation.

4. Jahn± Teller eŒects on the rotational energy levels

Up to this point, we have treated only the spin± vibronic portion of the Hamil-

tonian and have ignored the rotational energy levels. However, given adequate spec-

troscopic resolution the vibronic levels may be rotationally resolved, in which case

the values of the parameters in the rotational Hamiltonian may give insight to the

Jahn± Teller coupling of the molecule. Similarly, Jahn± Teller eŒects can have rather

profound, but generally poorly understood, eŒects upon the rotational structure.

The rovibronic structure of 2E states has been well studied. Child and Longuet-

Higgins [31] laid the theoretical framework, which Child [69, 71] Brown [34], Russell

and Radford [72, 73], Endo et al. [74] , Hougen [35] and Watson [36] elaborated.

The last two papers are of particular interest to the current work, as they provide
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478 T. A. Barckholtz and T. A. Miller

the most general discussion of the terms directly involving vibronic and electronic

angular momentum, which are the properties most aŒected by Jahn± Teller coupling.

4.1. Rotational basis set and Hamiltonian

The total angular momentum of the molecule, excluding nuclear spin, is J. It is

composed of the electron spin angular momentum S, the electronic orbital angular

momentum L , the vibrational angular momentum G and the angular momentum

R associated with rotation of the molecule as a whole. Both because spin plays a

unique role in the problem and because J and S are conserved vectors, it is useful

to de® ne a s̀pinless’ angular momentum N = J S. The projection of N on the z

axis is K .

The rovibronic basis set can either include S in the vibronic portion or the

approximation can be made that both spin components have identical vibronic

wavefunctions and S is an independent quantum number, which would therefore be

included in the rotational basis set. The complete rovibronic basis set, assuming the

molecule corresponds to Hund’s case (a),† is therefore either

|spin± vibronic ñ |rotational ñ = |j , n j , a , S ñ |J , P , M ñ , (88)

or, if spin ± orbit coupling is separated from the Jahn± Teller coupling,

|vibronic ñ |spin ñ |rotational ñ = |j , nj , a ñ | S ñ |J , P , M ñ , (89)

where P and M are the projections of J on the molecular and space-® xed z axes

respectively. It follows from these de ® nitions that P = K + S .

Equations (88) and (89) are simply the Jahn± Teller eigenfunctions (74) and (75)

respectively multiplied by the rotational basis set. In the majority of cases thus far

experimentally observed, the assumption has been made that the two spin compo-

nents have identical PESs and vibronic wavefunctions, and hence equation (89) has

been used. As noted in the previous section, none of the terms in the Hamiltonian yet

considered raises the degeneracy of the eigenfunction |j , n j , a , S ñ with | j , n j , a , S ñ
(or |j , n j , a ñ | S ñ with | j , n j , a ñ | S ñ ). To reduce the size of the calculations, it is

therefore convenient to take symmetric and antisymmetric combinations of the rovi-

bronic basis set, as in equation (77), and add a parity quantum number. The typical

rovibronic basis set for a Jahn± Teller molecule is then either

|J , P , S , ± ñ = 2
1/ 2 |j , n j , a , S ñ |J , P , M ñ ± ( 1)

J P + S S | j , nj , a , S ñ |J , P , M ñ
(90)

or

|J , P , S , ± ñ = 2
1/ 2 |j , nj , a ñ | S ñ |J , P , M ñ ± ( 1)

J P + S S | j , nj , a ñ | S ñ |J , P , M ñ .

(91)

In the two limits of small spin ± orbit coupling or large Jahn± Teller coupling, the

spin± vibronic wavefunction is identical with the vibronic wavefunction, and the two

rovibronic basis set choices become identical. In the situation where neither of these

limits is approached, a rovibronic basis set of equation (91) is typically used, even

† A case (b) basis can also be proposed in which there is no conserved projection S of
S along the symmetry axis, but instead N and S are vectorially added. Because most of

the experimentally observed molecules have reasonable spin± orbit coupling, case (a) is most
appropriate. There are numerous discussions in the literature of the rotational coupling cases

and we shall not consider case (b) further.
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 479

though it is not precisely correct to do so. The approximation of equation (91) will

have its greatest impact on the interpretation of the vibronic angular momentum.

The total rotational Hamiltonian, ÃH rot, is the sum of a number of terms:

ÃH rot = ÃH R + ÃHL2 + ÃH SR + ÃH CD + ÃH HF . (92)

The ® rst term, ÃH R , is the rotational Hamiltonian for a symmetric top, including the

spin uncoupling eŒects,

ÃH R = B (J L G R S)
2

+ (A B ) ÃJ z
ÃLz

ÃGz
ÃRz

ÃSz

2

. (93)

The parameters A and B are the rotational constants for a prolate symmetric top,

de® ned at the symmetric con® guration. (For an oblate top, A and B should be

replaced by B and C respectively.) This term describes the simple end-over-end

rotation of the nuclei for a symmetric top molecule.

Because of the distortion of the PES caused by Jahn± Teller coupling, a c̀or-

rection’ term, ÃH L2 , is added to the Hamiltonian to account for the molecule’s

àsymmetry’,

ÃH L2 = h1
ÃL 2 ÃN

2
+ + ÃL2

+
ÃN

2
+ h2

ÃL2 ÃN z
ÃN + ÃN ÃN z + ÃL2

+
ÃN z

ÃN + + ÃN +
ÃN z ,

(94)

where ÃL 2
+ and ÃL2 are the l̀adder operators’ introduced by Hougen [35] to convert

one component of the vibronic state into the other. To describe the interaction of

the electron spin angular momentum and the rotational angular momentum of the

molecule, a spin± rotation term is added to the Hamiltonian:

ÃH SR = 1
2

a ,b

« a b N a Sb + Sb N a . (95)

This term will always be present. There are several other possible spin-dependent

terms in the rotational Hamiltonian. If S is not included in the spin± vibronic basis,

the spin± orbit coupling term ÃH SO must be introduced. If the multiplicity of the state

is a triplet or higher, a direct coupling ( s̀pin-spin’) term, ÃH SS , must also be included.

The terms ÃH CD and ÃH HF account for the centrifugal distortion and hyper® ne eŒects

and will not be considered further in this review.

Because ÃHL2 is already an èŒective’ Hamiltonian operator coupling the degen-

erate components of the electronic basis, we do not need to simplify it further.

However, ÃH R and ÃH SR may be simpli® ed. For a symmetric top molecule, only ® ve

of the nine possible spin± rotation Cartesian tensor components « a b are unique, « aa

is the spin± rotation tensor component along the symmetry axis and « bb (or « cc) is its

counterpart along the axes perpendicular to the symmetry axis. In addition, there

are linear combinations, « 1, « 2a and « 2b , describing spin± rotation coupling between

states of | L = + 1 ñ and | L = 1 ñ . Therefore, ÃH SR reduces to [74]

ÃH SR = « aa
ÃN z

ÃSz + 1
2

« bb
ÃN+

ÃS + ÃN ÃS+ + « 1
ÃL2 ÃN +

ÃS+ + ÃL 2
+

ÃN ÃS

+ « 2a
ÃL2 ÃN z

ÃS + ÃS ÃN z + ÃL 2
+

ÃN z
ÃS+ + ÃS+

ÃN z

+ « 2b
ÃL2 ÃN ÃSz + ÃSz

ÃN + ÃL 2
+

ÃN +
ÃSz + ÃSz

ÃN+ . (96)

While, in principle, corrections to ÃH SR due to distortions are possible, they have

in the past always been considered negligibly small. The ® rst term of ÃH SR is most
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480 T. A. Barckholtz and T. A. Miller

important, both because the eŒective value of « aa is large and because it alone has

non-constant terms diagonal in the ® ne structure state. However, values for all ® ve

parameters have been reported for some molecules.

The ® rst term of ÃH rot is also complicated. We shall follow the work of others

[34± 36, 74] and write ÃH R as the sum of two terms:

ÃH R = B R
2

+ (A B ) ÃR
2
z (97)

= B (N L G )
2

+ (A B ) ÃN z
ÃLz

ÃGz

2

. (98)

We can then decompose ÃH R into three physically meaningful terms:

ÃH R = ÃH RD + ÃH Cor + ÃH SU , (99)

where

ÃH RD = A ÃJ z
ÃSz

2

+ B ÃJ 2 ÃJ 2
z , (100)

ÃH Cor = 2A ÃLz + ÃGz
ÃN z , (101)

ÃH SU = 2B ÃJ x
ÃSx + ÃJ y

ÃSy . (102)

These three terms are the rotational operator diagonal in the vibronic basis ( ÃH RD ),

the Coriolis interaction ( ÃH Cor), and the spin-uncoupling operator ( ÃH SU ). In reducing
ÃH R in this fashion a number of steps and assumptions have been employed. The

original literature in this area should be consulted for full discussion of these

details. We shall mention only some of the most important of these assumptions. To

obtain ÃH RD and ÃH Cor, terms of ÃH R with only vanishing matrix elements within

the electronic state are discarded. Simultaneously a purely vibronic Coriolis term is

discarded because its only eŒect is a very small correction to the rotational constants.

As written, ÃH RD has only non-vanishing diagonal matrix elements in the vibronic

or spin± vibronic basis set, while ÃH SU has only non-vanishing matrix elements

between the diŒerent spin components. The Coriolis coupling term ÃH Cor has both

diagonal and oŒ-diagonal matrix elements in the vibronic or spin± vibronic basis set,

as does ÃH SO . The matrix elements of all of these terms in the Hamiltonian have

been derived elsewhere [74] .

Considerable care must be taken with respect to the interpretation of the r̀ota-

tional’ parameters of the rotational Hamiltonian. In molecules that obey the Born±

Oppenheimer approximation, their interpretation in terms of expectation values

of operators over the electronic eigenfunction, with at most weak vibrational de-

pendence, is straightforward. Traditionally, in molecules with Jahn± Teller coupling,

which is a breakdown of the Born± Oppenheimer approximation, the de® nition of

the rotational parameters would be in terms of the vibronic eigenfunctions, |j , n j , a ñ .
In this case, spin± orbit coupling is considered small compared with v̀ibronic’ eŒects

and therefore included in ÃH R with its matrix constructed from the basis set of

equation (91). As we have seen, ÃH SO is often comparable with, or even larger than,

the vibronic terms. In this case, the matrix of ÃH R is constructed using the basis

set of equation (90). The r̀otational’ parameters then correspond to expectation

values over the spin± vibronic eigenfunctions |j , n j , a , S ñ . In essence, this amounts to

treating the components of each spin multiplet independently. This might appear to

be a loss of information with respect to the traditional v̀ibronic’ approach, which
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 481

treats them simultaneously with one set of vibronic parameters. However, as will be

shown, when using only one set of vibronic parameters there are often breakdowns

in analyses that can only be remedied by considering oŒ-diagonal perturbations in

the vibronic basis set. The spin± vibronic approach avoids this problem. Assuming

that a complete set of eigenfunctions are available for a c̀orrect’ solution to the

eigenvalue problem of the stationary molecule portion of the Hamiltonian, including

spin± orbit coupling, both approaches are equivalent.

In addition to the above complexity, it should be remembered that, besides

these ® rst-order contributions arising from eigenfunctions within a given electronic

state, there are also higher-order eŒects due to coupling with other electronic states.

However, these are generally small corrections and reasonably well documented.

More important, but not so well described, are the higher-order eŒects arising from

coupling among the spin vibronic levels of a given electronic state. These eŒects will

be considered below.

4.2. Coupling of vibronic, rotational and spin angular momenta

4.2.1. Coupling using vibronic eigenfunctions

Critical to the evaluation and interpretation of ÃH rot is the understanding of

the roles that the total vibrational and electronic angular momenta assume in a

state perturbed by both Jahn± Teller and spin± orbit coupling. We ® rst examine the

situation for the traditional vibronic eigenfunctions, |j , n j , a ñ .
In equation (101), the operators ÃLz and ÃGz are evaluated over the vibronic

portion of the wavefunction. These two operators have the following expectation

values for the primitive Jahn± Teller basis functions (8):

p

i= 1

á vi, li | á L | ÃGz | L ñ
p

i= 1

|vi, li ñ =

p

i= 1

li f i (103)

p

i= 1

á vi, li | á L | ÃLz | L ñ
p

i= 1

|vi, li ñ = L f e , (104)

where f e is the electronic orbital angular momentum, as de® ned in equation (73),

and f i is the Coriolis coupling constant for the ith vibrational mode. With these

matrix elements, we can then rewrite ÃH Cor in terms of the expectation value over

the eigenfunction for a given degenerate vibronic level:

ÃHCor = 2A á j , nj , a = e| ÃLz + ÃGz |j , n j , a = e ñ ÃN z (105)

= 2A f t
ÃN z , (106)

where

f t =

i

c
2
i,n j L i f e +

p

m= 1

lm,i f m . (107)

The derivation of equation (107) is analogous to that used earlier to obtain the

spin± orbit quenching constant (equation (80)). The summation over i in equation

(107) runs over all the basis functions in the wavefunction, therefore, the value of f t

is a complicated function of the Jahn± Teller constants and must be calculated for

each set of parameters. Furthermore, this equation shows that each energy level has

a distinct value of f t, just as each energy level has a unique value of the spin± orbit

quenching parameter dj ,n j .
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482 T. A. Barckholtz and T. A. Miller

When only a single vibrational mode is active and spin± orbit coupling is small,

equation (107) can be simpli® ed, for C3v symmetry, with the aid of equations (46)

and (80), to a simpler equation for f t:

f t = f e
1
2 f i d j ,nj + j f i = f ed j ,nj f i

1
2
d j ,nj j . (108)

Because j and d j ,n j are signed quantities, f t is also. When d j ,n j is a reasonably good

approximation to the spin± orbit quenching by the Jahn± Teller coupling, equation

(108) can be combined with equation (83) to deduce the Jahn± Teller coupling

constants from the observed Coriolis constants. Later in this article we give several

examples of how resolution of the Coriolis coupling for several levels can lead to an

accurate evaluation of the spin± orbit and linear Jahn± Teller coupling constants.

We now consider the two limits of no Jahn± Teller coupling (d j ,nj ! + 1) and

strong Jahn± Teller coupling (dj ,n j ! 0). When Jahn± Teller coupling vanishes, equa-

tion (108) simpli® es to

f t = f e + li f i, (109)

which is the normal value for f t of a 2E state, in the absence of any vibronic

interactions.

However, when Jahn± Teller coupling is strong, the electronic orbital angular

momentum is completely quenched and dj ,n j approaches zero for all levels. Equation

(108) then reduces to

f t = j f i. (110)

For the vibrationless level, which has only j = ± 1
2
, this means that the Coriolis

coupling constant has changed from f e, its value in the absence of Jahn± Teller

coupling, to 1
2
f i Ð a dramatic diŒerence. If Jahn± Teller coupling is strong, the

molecule becomes distorted to lower symmetry. How can there be any vibrational

angular momentum, which is required to have Coriolis coupling, in a distorted

molecule? The answer is that equation (110) has been derived assuming only linear

Jahn± Teller coupling and no quadratic coupling. In this case, while the molecule

is distorted along q i, there is no distortion along u i ( ® gures 1(b) and 2(b)). For

the speci® c case of the v̀ibrationless’ level, j = ± 1
2
, n j = 1 , the eigenfunction is

an equal mixture of basis functions with even vi and li = 0 and those with odd

vi and li = 7 1. Therefore, rather than having zero vibrational angular momentum

(the case when there is no vibronic coupling and li = 0), the v̀ibrationless’ level has

an expectation value of á li ñ = ± 1
2
, and therefore has a Coriolis coupling constant

f t of ± 1
2
f i. At the further limit of severe quadratic Jahn± Teller coupling, barriers

to the pseudo-rotation of the molecule about u i will be created, vibrational basis

functions of higher |li | will be mixed into the v̀ibrationless’ eigenfunction, and li will

be randomized. At this limit, the molecule is truly distorted and there is then no

vibrational angular momentum with which to generate Coriolis coupling. (See also

the discussion following equation (79).)

To this point, only the vibronic expectation values of ÃHR have been considered.

If ÃH R were truly small compared with the terms that determine the vibronic

eigenfunctions, no more discussion would be necessary. However, in the vibronic

approach, one must consider ÃH SO as contained in ÃH R and the above assumption

is of dubious validity. Indeed, experimental results ® rst prompted the questioning

of the validity of neglecting the mixing of the spin components of the vibronic

eigenfunctions by terms of ÃH R . In particular, values for « aa in methoxy and related
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 483

radicals were an order of magnitude larger than « bb . This and related higher order

eŒects were explored for the general case [61] and then applied speci® cally to the

X 2E ground state of CH3O by Liu et al. [46] .

Speci® cally, they considered the second-order eŒects of two perturbations with

non-vanishing matrix elements between diŒerent vibronic levels of the same degen-

erate electronic state. These perturbations were ÃH Cor (equation (101)) and ÃH SO

(equation (18)). These perturbations give rise to three correction terms. One, involv-

ing | ÃH SO |2, can be viewed as a correction to the spin± spin coupling and vanishes

for a doublet state. Another, involving | ÃHCor |2 , gives a small correction to the A

rotational constant. The most interesting correction results from the cross term,
ÃH Cor 3 ÃH SO , and gives rise to a correction to the spin± rotation coupling:

ÃH ¢
SR = « 2v

aa
ÃSz

ÃN z . (111)

Evaluation of the expression for « 2v
aa showed that it is an order of magnitude

larger than the traditional term and conveniently explained the observed value of

« aa in CH3O. The two spin components of a vibronic level can then be analysed

simultaneously with an eŒective Coriolis and spin± rotation Hamiltonian:

ÃH Cor + ÃH SR
eŒ

= ÃHCor + ÃH SR + ÃH ¢
SR

= 2A f
0
t + « eŒ

aa
ÃSz

ÃN z + 1
2

« bb
ÃN+

ÃS + ÃN ÃS+ , (112)

with

« eŒ
aa = « 0

aa + « 2v
aa , (113)

where « 0
aa should be viewed as the traditional spin± rotation coupling constant,

containing ® rst order contributions from direct coupling of the spin to the magnetic

® eld created by the rotating molecule as well as second order eŒects involving

cross-terms of ÃH rot and ÃH SO between diŒerent electronic states. It is the form of

equation (112) that has been used to analyse experimental spectra and that has

yielded anomalously large values of « eŒ
aa .

4.2.2. Coupling using spin ± vibronic eigenfunctions

What happens if the assumption that the two spin components have identical

vibronic eigenfunctions is discarded? First, spin ± vibronic eigenfunctions instead of

vibronic functions must be used to calculate the expectation values of the rotational

operators. Because the two spin components no longer have identical vibronic

eigenfunctions, they will have diŒerent expectation values. In this case, the Coriolis

coupling constant for each spin component is

ÃHCor = 2A á j , n j , a = e, S | ÃLz + ÃGz |j , n j , a = e, S ñ ÃN z (114)

= 2A f
S
t

ÃN z , (115)

where

f
S
t =

i

c
2
i,nj ,S L i f e +

p

m= 1

lm,i f m . (116)

The addition of a spin± rotation interaction for each ® ne structure component leads

to

ÃH Cor + ÃH SR = 2A f
S
t + « 0

aa S ÃN z . (117)
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484 T. A. Barckholtz and T. A. Miller

The diŒerence D f t between the Coriolis constant for each spin component, is

D f t = f
+
t f t , (118)

where the signs correspond to the sign of S = ± 1
2
. The two Coriolis constants will

be approximately related by

f
±
t = f

0
t ± 1

2 D f t, (119)

where f 0
t denotes the Coriolis coupling constant that would result if there were no

spin± orbit coupling, that is a Coriolis coupling constant corresponding to equation

(107).

The two equivalent approaches, equations (112) and (117), must lead to the same

expectation value. For the spin component with S =
1
2
, this reasoning leads to the

following equality:

2A f
0
t + 1

2 « 0
aa + « 2v

aa = 2A( f
0
t + 1

2 D f t) + 1
2 « 0

aa . (120)

Combining equations (118)± (120) yields the following relationship between the two

approaches:

« 2v
aa

2A
= D f t. (121)

For the vibrationless level, the sign on D f t will be the opposite of the sign of a f e

and in the single mode limit its sign will alternate for ® xed j with increasing v in

the Jahn± Teller active mode. To see why this is true, consider the two components

of the vibrationless level of a Jahn± Teller active radical, as shown in ® gure 11. The

component that is higher in energy will, because of its smaller energy diŒerence with

the other vibronic energy levels of the state, have a greater amount of mixing with the

other levels. This will cause the higher-energy spin component of the vibrationless

level always to have its orbital angular momentum quenched to a greater degree.

The energy levels of ® gure 11 are depicted for the case when a < 0, which means

that the component of the vibrationless level with L and S of the same sign will

be lower in energy, as shown. In this case, f
+
t will be closer to + 1 (its value in the

absence of Jahn± Teller coupling) than f t , and so D f t = f
+
t f t will be positive. If

instead a is positive, then the component with S = 1
2

and L positive will be lower

in energy, and D f t will be negative.

4.3. The l-type doubling and L -doubling term ÃHL2

The last contribution to the rotational Hamiltonian that we shall consider in

detail is ÃH L2 . Our motivation for discussing this term is that it provides an additional

means by which experimental data can characterize the Jahn± Teller interaction. The

notation ÃH L2 is often written as ÃH JT , which is misleading, as it implies that this

term is derived exclusively from Jahn± Teller eŒects. However, each of the parameters

h1 and h2 in equation (94) contains a contribution from Jahn± Teller coupling as

well as from L-uncoupling terms via the interaction of the Jahn± Teller electronic

state with other electronic states of the molecule. As both Hougen [35] and Watson

[36] have shown, h1 and h2 can be broken down into contributions from the two

diŒerent types of coupling:

h1 = h
JT
1 + h

L
1 , (122)

h2 = h
JT
2 + h

L
2 . (123)
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Here, we follow Hougen [35] in the naming of these parameters as h1 and h2 , but

follow Watson [36] in adding superscripts to denote the source of the coupling. (In

Watson’s notation, h1 is 1
2
q0 and h2 is 2r0.) For some point groups, in particular,

D3h and D5h , h2 may vanish by symmetry.

If h1 and h2 are known for only a single isotopomer of a molecule it is impossible

to separate the two contributions to each. As both Hougen and Watson showed, hJT
1

is proportional to B0 , hL
1 is proportional to B 2

0 , hJT
2 is proportional to (A0B0 )

1/ 2
, and

hL
2 is proportional to A0B0 . Therefore, if h1 and h2 are known for more than one

isotopomer, the individual contributions from Jahn± Teller and L uncoupling can be

extracted.

The Jahn± Teller parameters hJT
1 and hJT

2 have been shown by Watson [36] to

have a clear correlation to the vibronic Jahn± Teller parameters x e,i and Di:

hJT
1 = i 21/ 2Di x e,iC

xx
i , (124)

hJT
2 = i 21/ 2Di x e,iC

xz
i , (125)

where

C
a b

i =
1

x e,i

¶ B a b

¶ q i

=
a

a b

i

2 c
3/ 2

i I a I b

,

with

a
a b

i =
¶ I a b

¶ Qi 0

c i =
2 c x e,i

"
.

In these equations, the C
a b

i are the inertial derivatives of the ith vibrational mode,

which are non-zero for the e modes and the moments I a b of inertia are those for the

symmetric con® guration [75]. It would be quite di� cult to determine experimentally

all the parameters of equations (124) and (125), particularly for molecules with

multiple Jahn± Teller active modes. However, the C
a b

i are readily calculated from

ab initio calculations of the vibrational normal modes [76] . These equations may

therefore be a point of comparison of ab initio calculations with experiment.

In his treatment of the rovibronic problem for Jahn± Teller molecules, Watson

made one more key contribution. He showed that the rotational constant tensor for

points around the bottom of the moat of the PES can be approximated by

B hJT
1 cos u hJT

1 sin u hJT
2 cos u

hJT
1 sin u B + hJT

1 cos u hJT
2 sin u

hJT
2 cos u hJT

2 sin u A

. (126)

This tensor relates the rotational constants at the minimum and maximum, where

u = 0 and , respectively, with the rotational constants at the symmetric con® g-

uration (A and B ) and the rotational Jahn± Teller parameters hJT
1 and hJT

2 . The

eigenvalues of equation (126) with u i = 0 are the rotational constants of the molec-

ular con® guration at the minimum of the moat, which we call Amin , Bmin and Cmin .

(At the bottom of the moat, the con® guration is no longer a symmetric top and

Bmin /= Cmin .) Equations (124)± (126) provide the framework through which the ro-

tational constants A and B , the linear Jahn± Teller parameters x e,i and Di, and the

rotational Jahn± Teller parameters hJT
1 and hJT

2 can all be related to one another.

While experimental determinations of h1 and h2 have been made for a number

of molecules, relatively few studies have attempted to relate the parameters to

the rotational constants, vibronic Jahn± Teller coupling constants and geometric
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486 T. A. Barckholtz and T. A. Miller

distortions of the molecule. Herzberg et al. [77± 79] have analysed the 3p 2E
¢
state of

H3 and D3 and thereby separated the Jahn± Teller and L-uncoupling contributions.

A large amount of data has been collected and analysed for the B 1E
¢ ¢

state of

NH3, but no analysis of it has been successful in identifying all the various coupling

constants outlined above [80± 84] . The microwave work of Endo and co-workers

[74, 85, 86] on the methoxy radical has identi® ed the h1 and h2 parameters of
12CH3O and 13CH3O, but unfortunately a completely analysed spectrum for CD3O

has not yet been published. Lastly, Yu et al. [12 ± 14] have rotationally resolved the

electronic origin band of the C5H5, C5D 5, C5H4D and C5D4H radicals, providing

a beautiful example of all of the rotational Jahn± Teller coupling constants and

their relationship to the geometric distortion of the radical. However, all of their

calculations relating the h1 parameter to the geometric distortion assumed that the

radical had only a single Jahn± Teller mode. They were able to make only a relatively

crude estimate of the vibronic Jahn± Teller coupling constant Di for that mode, as

there is an absence of supporting Jahn± Teller analysis of the vibronic structure.

Thus, a signi® cant amount of work remains in deciphering the Jahn± Teller coupling

in the cyclopentadienyl radical.

5. Intensities in electronic spectroscopy

Electronic spectroscopy has been the major tool for the investigation of the

Jahn± Teller eŒect. The examples to be shown later all involve electronic transitions

between a 2A1 state and a Jahn± Teller active 2E state, under C3v symmetry. The

intensities of the vibronic progressions in these spectra can be calculated once the

eigenvectors are known from the diagonalization of the Hamiltonian matrix. Other

types of spectroscopy that have been performed on Jahn± Teller active molecules

include microwave, laser magnetic resonance, Raman and infrared. The selection

rules and intensities for Raman [31, 52, 87] and infrared [31, 88, 89] transitions

of Jahn± Teller active molecules have been developed elsewhere, albeit without the

consideration of spin± orbit coupling as we have treated it in this paper.

Before we delve into the transitions to and from the Jahn± Teller state, we shall

quickly review the transitions between two states that are described only by harmonic

oscillator potentials. In this case, if the molecule begins in the vibrationless level of

one state, it will have electronically allowed transitions only to the vibrationless level

of the other state, and to any of the totally symmetric modes. The relative intensities

of the latter progressions are given by the Franck± Condon factors between the

two states. Under the harmonic oscillator potentials, there is zero intensity to the

overtones of the degenerate modes (® gure 14(a)). As originally derived elsewhere

[32], Jahn± Teller coupling produces intensity in transitions in the Jahn± Teller active

modes that are otherwise dark, and the addition of spin± orbit coupling does not

change this fundamental conclusion. As the starting point for the calculation of

transition intensities, the wavefunction for the 2A state is given by

2
A = á S |

p

r= 1

á vr , lr | á L = 0| , (127)

where the product is over all the vibrational modes of e symmetry that were included

in the Jahn± Teller calculation of the corresponding 2E state. Because there is no

electronic orbital angular momentum in the 2A state, L takes on an eŒective value

of zero. It is included in the wavefunction as a quantum number to simplify the
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 487

transition dipole matrix elements with the 2E wavefunction. Note the similarity

between the basis functions for the 2A state (equation (127)), and the basis functions

for the 2E state (equation (8)), for every combination of vibrational quantum

numbers, there exists one basis function in the 2A state with L = 0 and two in the
2E state with L = ± 1. For the following equations, it is immaterial whether the

state is of A1 or A2 symmetry, as both are electric dipole allowed transitions, but

for diŒerent symmetry of the non-degenerate state.

The transition dipole intensities I , of an 2AÖ2E electronic transition are given

by

I =
2
A ÃT

2
E

2

= á S ¢ |
p

r= 1

á v ¢
r , l ¢r | á L ¢ = 0| ÃT |j , n j , a , S ñ

2

, (128)

where ÃT is the transition dipole operator. Because these are electric dipole transitions,

the spin angular momentum is unaŒected by the transition and can be factored out of

the intensity calculations. Equation (128) can therefore be combined with equations

(127) and (74) and be rewritten as

I =

p

r= 1

á v ¢
r , l ¢r | á L ¢ = 0| ÃT

i

ci,n j ,S | L ¢ ¢
i ñ

p

m= 1

v ¢ ¢
m,i, l ¢ ¢m,i

2

, (129)

which after invocation of the Born-Oppenheimer approximation and separation of

the nuclear and electronic components becomes

I =

i

ci,n j ,S

p

r= 1

á v ¢
r , l ¢r |

p

m= 1

v ¢ ¢
m,i, l ¢ ¢m,i á L ¢ = 0| ÃT | L ¢ ¢

i ñ
2

. (130)

Assuming that the transition dipole matrix element á L ¢ = 0| ÃT | L ¢ ¢
i ñ is constant, the

transition probability from a given vibrational level of the 2A state to a given vibronic

level of the 2E state becomes equal to a sum of vibrational overlap integrals.

If we make the obviously oversimpli® ed assumption that the Franck± Condon

factors are completely diagonal, the only terms in equation (130) that survive are

those that have identical vibrational quantum numbers in the two basis functions.

The general form of the transition intensity then becomes proportional to the sum

of the squares of the expansion coe� cients:

I =
2
A ÃT

2
E

2

=

i

c
2
i,nj ,S

p

m= 1

á v ¢
m, l ¢m | v ¢ ¢

m,i, l ¢ ¢
m,i ñ

2
. (131)

Equation (131) gives a general formula for the transition intensity between a vi-

brational level of the 2A state and a level of the 2E state of a Jahn± Teller active

molecule. In most spectroscopic investigations, especially those performed in free jet

expansions and molecular beams, the molecules are prepared in individual vibronic

levels and the spectra are obtained from that level. We shall therefore continue

to develop these equations for the cases where the molecule is initially in a single

vibronic level of either state.

For a given vibronic level of a 2A state, the initial vibrational wavefunction is

described by a single set of vibrational quantum numbers. Therefore, the intensity
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488 T. A. Barckholtz and T. A. Miller

Figure 14. Qualitative electronic spectra for a A 2 A1 Ö X 2E transition for a Jahn± Teller

active molecule. (a)± (d) Sample intensities for an excitation spectrum from the lowest
energy level of the 2 E state on the left and an emission spectrum from the vibrationless

level of the 2A state on the right, assuming a single Jahn± Teller active mode. The

terms in the Hamiltonian included for each spectrum are as follows: (a) ÃH h ,e , (b)
ÃH h ,e + ÃH l , (c) ÃH h ,e + ÃH l + ÃH qii , (d) ÃH h,e + ÃH l + ÃH SO . (e) A sample transition from

the 2 A state with v ¢ = 1 to the 2E state for the case of linear Jahn± Teller coupling

only. The lines in the A 2 A1 ! X 2 E spectra are labelled according to their values of
j : (H), 1

2
, (‡), 3

2
, (†), 5

2
. The levels in (a), (b) and (d) all correspond to j = 1

2
.
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is given by

I =

p

i= 1

á v ¢
i , l ¢

i | ÃT |j , n j , a , S ñ
2

= c
2
i,n j ,S . (132)

In most experiments, the molecules are prepared in a way such that all the l ¢
i are

populated equally and equation (132) becomes a summation over all possible l ¢i .
The intensity of the transitions from the vibronic level of the 2A state to the

levels of the 2E state will be proportional to the square of the coe� cient in the
2E wavefunction of that basis function (® gure 14(b)). The energy spacings of the

transition are given by the energies of the 2E state, for example, the energy levels

of ® gures 5± 10 and 12. Because of the erratic nature of the energy levels, no

simple patterns can be generalized, as is done for Franck± Condon progressions of

symmetric modes in typical electronic spectra.

The symmetry blocking of the wavefunctions by the half-integer quantum number

j has important rami® cations in the spectroscopy from a 2A state to a 2E state. For

example, if the molecule begins in the vibrationless level of the 2A state, where all

v ¢
i = 0, then all l ¢i must also be equal to zero. Because of the nature of the vibrational

overlap integrals in equation (131), transitions will occur only to those levels in the
2E state that have contributions from basis functions with v ¢ ¢

m,i = l ¢ ¢m,i = 0. These

levels of course have j = ± 1
2

and, because j is conserved for linear coupling, all

accessible levels must have j = ± 1
2
. If one vibrational mode is excited to v ¢

i = 1

in the 2A state, then l ¢i = ± 1 and j can be ± 1
2

or ± 3
2
. In general, the observable

levels in the 2E state will be those with |j | % 1
2

+ i v ¢
i . This conclusion plays a

key role in the analysis of the spectra. If spectra are obtained from both the v ¢
i = 0

and v ¢
i = 1 levels, then the peaks in the v ¢

i = 1 spectrum that do not appear in the

v ¢
i = 0 spectrum must be due to j = ± 3

2
levels (compare ® gures 14(b) and (e), as

well as the dispersed ¯ uorescence spectra of CF3S, see ® gure 18 later). The spectra

from higher vibrational levels can be compared with those from lower lying states

and de ® nite assignments of j can be made.

The intensities of the converse transitions, from a given level of the 2E state,

|j , n j , a , S ñ , to the levels of the 2A state are also contained in equation (131). Transi-

tions to all a1 (or a2) and e vibrational levels of the 2A state are therefore possible,

because the true basis set for the 2E state is an in® nite set of all possible combi-

nations of vibrational quantum numbers. The relative intensities of the transition

to each level in the 2A state is again given by the square of the coe� cient of that

level’s corresponding basis function in the wavefunction of |j , n j , a , S ñ . The energy

spacings of the spectrum correspond to those of the 2A state, which are the normal

spacings of a harmonic oscillator (® gure 14(a)). For the transition from the 2A state

to the 2E state, marked diŒerences appear depending on which level of the 2A state

is populated. The transitions from diŒerent levels of the 2E state will all go to the

same energy levels of the 2A state, just with diŒerent intensities.

We mentioned earlier that, when a transition occurs from the v ¢ = 0 level of

the 2A state to the 2E state, only those levels with j = ± 1
2

will be observed. This

is true only when quadratic Jahn± Teller coupling is neglected and j is conserved.

When quadratic Jahn± Teller coupling is introduced, the j = ± 1
2

levels are mixed

with the j = 7 5
2

levels ( ® gure 3). The levels that are predominantly j = ± 5
2

have

some j = ± 1
2

character mixed in by quadratic coupling and therefore gain intensity
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490 T. A. Barckholtz and T. A. Miller

in the transition (® gure 14(c)). Similar arguments hold true for the intensities of the

higher j levels. However, the j = ± 3
2

levels will still be dark.

The addition of spin± orbit coupling has several eŒects on the spectra from the 2E

state to the 2A state. For the transitions from the 2A state to the 2E state, spin ± orbit

coupling has the clearly observable eŒect of turning nearly all the transitions into

doublets. (If the a1 and a2 levels have been split by quadratic coupling, they will

remain as singlets owing to symmetry (® gure 3). If, however, quadratic coupling is

absent, the degenerate pair of a1 and a2 levels will be split into two levels of e1/ 2

symmetry.) Furthermore, because of the quenching of the spin± orbit coupling by

the Jahn± Teller coupling, the splitting is not constant, nor is it a smoothly varying

splitting with respect to energy, although in general the splitting is smaller as the

internal energy is increased (see the discussion earlier and ® gures 8± 10).

In the absence of any Jahn± Teller coupling, the relative intensities of the two

spin± orbit components of a given vibronic level should be 1: 1. However, ® gure 14(d)

and the experimental spectra of the methoxy family of radicals (see ® gures 18 and

19 later) clearly indicate that this is not the case for molecules with signi® cant Jahn±

Teller and spin± orbit coupling. The origin of this eŒect lies in the relative ordering

of the spin± orbit components of the vibronic levels. Figure 11 is a schematic repre-

sentation of the linear Jahn± Teller interactions between the spin± orbit components

of the v = 0 and v = 1 levels. Clearly, the linear Jahn± Teller mixing of the e1/ 2

manifold will be quite diŒerent from the e3/ 2 levels, as all the energy separations are

diŒerent. Because of the diŒerent energy separations, the
1
2
, 1, e1/ 2 , S wavefunction

will have much less v = 0 character than the
1
2
, 1, e3/ 2 , S wavefunction. Therefore,

when a transition from the v ¢ = 0 level of a 2A state occurs to the 2E state, the

transition to the 1
2
, 1, e3/ 2, S level will be stronger than the one to the 1

2
, 1, e1/ 2 , S

level. Conversely, when the transition is from the v ¢ = 1 level of the 2A state, the

transition intensities will be reversed. An excellent example of this mixing is found

in the emission spectra of the CF3S radical, where the relative intensities to the two

spin components of the origin are 3 : 1 from the vibrationless level of the 2A state

but 1 : 4 from the v ¢
6 = 1 level (see ® gure 18).

Spin± orbit coupling also changes the intensities of the a1 and a2 levels. Under the

spin double group they are of the same symmetry, e1/ 2 . As we discussed in section

3.2.3, this pair of levels are mixed with each other when both quadratic Jahn± Teller

coupling and spin± orbit coupling are present (® gure 12). In a 2A1 Ö
2E perpendicular

electronic transition, the a1 levels of a Jahn± Teller distorted 2E state are allowed

from the vibrationless level of the 2A state, whereas the a2 levels will have zero

intensity. The combination of spin± orbit and quadratic Jahn± Teller coupling allows

both of the levels to be observed, with their intensities given by the amount of a1

character in each. The best examples of this phenomenon are CH3O and CF3O,

which have K 6 = 0.14 and 0.05 respectively. The spin± orbit coupling in each of

these radicals is substantial and mixes the a1 and a2 levels of the lowest j = ± 3
2

levels

quite thoroughly, allowing the two components to have nearly identical intensities

in the dispersed ¯ uorescence spectra.

A second spectroscopic implication of quadratic Jahn± Teller coupling on these

levels is that the observed splitting of the a1 and a2 levels can be greater than the

spin± orbit splitting of the origin. This result seems counterintuitive to the statement

made earlier that spin± orbit quenching generally increases as the internal energy

of the state is increased. However, the splitting of these two levels is actually
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 491

Figure 15. Normal modes of the CX3Y radicals.

increased by the combination of spin± orbit and quadratic Jahn± Teller coupling. A

clear example of this eŒect is in the spectra of the CF3O (section 6.2.3) and CH3O

(section 6.2.4) radicals.

6. Exam ples of the analysis of the spectra involving Jahn± Teller states

In this ® nal section, we shall review the analysis of the electronic spectra of

several Jahn± Teller molecules, all of C3v symmetry and all of the general form

CX3Y. This class of molecules oŒers a wide diversity of phenomena and is probably

the best studied experimentally. It includes the X 2E states of the methoxy family

(CH3O, CH 3S, CF3O and CF3S), as well as the A 2E states of the organometallic

monomethyl radicals MgCH3 , CaCH 3, ZnCH3 and CdCH3 . These examples will

allow us to apply the principles developed in the preceding sections and illustrate

the diŒerent ways in which molecules yield information about their spin± vibronic

coupling and the diŒerent approaches that have been developed to decipher this

coupling. We shall proceed from perhaps the simplest case, the excited state of the

MgCH3 radical, to probably the most complex (but most studied) member of the

family, the ground state of CH3O.

For each radical there are three vibrational normal modes of a1 symmetry and

three potentially Jahn± Teller active modes of e symmetry. The normal modes for

CH3O, calculated at the Hartree± Fock level, are depicted in ® gure 15. The a1 modes

are nominally the symmetric C ± H stretch (v1 ), the O ± C ± H umbrella motion (v2) and

the C± O stretch (v3). The degenerate modes are the asymmetric C ± H stretch (v4 ), the

H ± C ± H scissor motion (v5) and the O ± C ± H rock (v6). While the true normal modes

of each state of each molecule are linear combinations of these internal coordinate

motions, the internal coordinate descriptions are still useful visualizations of the

vibrational modes of the molecule.
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492 T. A. Barckholtz and T. A. Miller

6.1. Metal monomethyl radicals

The organometallic radicals discussed in the next three sections have 2A1 ground

states and 2E ® rst excited states. We shall focus our attention on the LIF excitation

spectra, as these experiments yield extensive data about the spin± vibronic coupling in

the A 2E states of these radicals. Other spectroscopic techniques that have been used

to investigate these molecules in their A states include optical Stark spectroscopy

(CaCH3 [90] ) and zero-electron kinetic energy pulsed ® eld ionization (ZEKE-PFI)

spectroscopy (MgCH3 [91] , ZnCH 3 [91] and CdCH3 [92] ).

Generally speaking, the experiments have yielded data about both spin compo-

nents, 2E1/ 2 and 2E3/ 2, of the excited state as well as an overview of the vibrational

structure. For the most part, Jahn± Teller activity has been observed in only one

mode, v6. The combination of relatively extensive data and moderately simple spec-

tra make these nearly ideal molecules for discussing the methodology of the analysis

of Jahn± Teller molecules, as well as the information that can be extracted from the

spectra.

In particular, these molecules nicely illustrate the complementary roles played

by the spin± vibronic analysis and the rotational analysis. As we have seen, the

spin± vibronic eigenvalues and eigenfunctions are determined by a combination of

vibrational, Jahn± Teller and spin± orbit eŒects. Therefore, the spin± vibronic spectrum

determined by these eigenvalues is the direct messenger of information about the

Jahn± Teller interaction and spin± orbit coupling.

However, the rotational spectrum is also aŒected and can produce its own `mes-

sages’ about these couplings. As noted earlier, the rotational parameters are expec-

tation values over the spin± vibronic eigenfunctions that are often quite complicated

linear combinations of the initial basis set. The expectation values of several pa-

rameters (e.g. the rotational constants) vary only slightly among the basis functions.

Therefore, their absolute variations and hence sensitivity to the modi® cations of the

eigenfunctions are quite small. On the other hand, some parameters, particularly

those related to electronic or vibronic angular momentum, show large variations

among the basis functions. Therefore, parameters measuring these angular momenta

may be very strongly aŒected by the mixing of the basis functions and hence e� cient

messengers of the inherent Jahn± Teller and spin± orbit coupling.

6.1.1. MgCH3

The electronic spectra of the MgCH3 radical have been obtained in our labora-

tory, both at moderate resolution [70] and at higher resolution for the origin band

[93]. The moderate resolution spectra of the two spin components of the 21 and 61

levels are shown in ® gure 16 together with simulations of the rotational structure.

The spin± orbit splitting of the 21 levels is clear in ® gure 16(a), with additional

rotational structure in each spin component. The fundamental of v6 ( ® gure 16(c)),

appears quite diŒerent, however.

The A 2E state of M gCH3 appears to have Jahn± Teller activity in only one mode,

v6 , and even this is fairly weak. Additionally, the spin± orbit coupling in MgCH 3 is

relatively small compared with the vibrational frequency. This state therefore falls

into the situation where some of the simple expressions historically developed to

describe Jahn± Teller eŒects are relatively accurate. We can thus manipulate several

of the equations from the previous sections to analyse easily the spin± orbit and

Jahn± Teller coupling in this state. The partial rotational analyses of the origin (00 =

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantitative insights about molecules exhibiting Jahn± Teller eŒects 493

Figure 16. LIF excitation spectra of MgCH3 . (Adapted from [70].)

j = 1
2
, n j = 1, S = ± 1

2
) and the fundamental of v6 (61 = j = 1

2
, nj = 2, S = ± 1

2
)

bands have measured the following parameters: x 0,6, a f ed1/ 2,1 (the observed spin±

orbit splitting of the origin), a f ed1/ 2,2 (the observed spin± orbit splitting of 61 ), and

f t (00 ) and f t (61 ) (table 5). To have a complete description of the Jahn± Teller and

spin± orbit coupling in the A 2E state, the following molecular parameters need to

be calculated from the experimentally measured quantities: x e,6 , D6, a, f e (or at least

the product a f e), and f 6 .
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494 T. A. Barckholtz and T. A. Miller

Table 5. Rotational parameters experimentally observed for the vibrationless level (00 ) and

the level with one quantum of v6 excited (61) of the A 2 E states of the organometallic
monomethyl radicals.a

Parameter MgCH3 CaCH3 ZnCH3 CdCH3

00

a f ed1 / 2 ,1 28.591 72.709 253.233 1008
A 4.989 5.386 4.946 4.965

A f 0
t 4.309 5.360 3.661 4.8

« eŒ
aa 0.202 0.013 2.73

f 0
t 0.8637 0.995 0.7402 0.55b

T00
c 20 030.296 14 743.382 24 082.820 23018

Reference [93] [90] [94] [95]

61

a f ed1 / 2 ,2 24.95 67d 189 736

A 5.04 5.0

A f 0
t 4.97 3.1

f 0
t 0.986 0.62

x 0,6
e 669 795d 825 650

Reference [70] [96] [91] [95]

a All parameters are in cm 1 , except f 0
t , which is dimensionless.

b For CdCH3 , f t was not determined by a simultaneous ® t to both spin components, as it
was for the other radicals. Instead, each spin component was analysed independently. The

average of the two values of f S
t is given.

c De® ned as the frequency from the vibrationless level of the ground state to the centre of

the two spin components of the origin of the excited state.
d Estimated from ® gure 1 of [96]. In this work, the fundamental of v6 is assigned as two

quanta of v6 .
e De® ned as the frequency from 1

2
, 1, S = 1

2
to 1

2
, 2, S = + 1

2
, which are the lower

energy spin components of the origin and the fundamental of v6 respectively.

If there is only small Jahn± Teller coupling, the approximate energies of the origin

and the j =
1
2

level of the fundamental of v6 are given by equation (78):

Ev6= 0 = x e,6 2D6 x e,6 (133)

Ev6= 1 = 2 x e,6. (134)

The diŒerence between these two levels, the experimentally observed x 0,6, is

x 0,6 = x e,6 (1 + 2D6) . (135)

Because each of these levels is split by spin± orbit coupling, we approximate x 0,6 as

the diŒerence between the average energies of the two spin components of each level

(table 5).

The observed spin± orbit splitting of each level, a f edj ,n j , is approximated by
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equation (83):†

a f ed1/ 2,1 = a f e (1 4D6 ) , (136)

a f ed1/ 2,2 = a f e ( 1 + 8D6) . (137)

The left-hand sides of equations (136) and (137) are measured experimentally

(table 5) which means that they form a 2 3 2 set of equations in two unknowns: the

product a f e and D6 . Solving the system leads to

D6 =
a f ed1/ 2,1 + a f ed1/ 2,2

8a f ed1/ 2,1 + 4a f ed1/ 2,2

, (138)

a f e =
a f ed1/ 2,1

1 4D6

=
a f ed1/ 2,2

1 + 8D6

. (139)

Because x 0,6 is also observed, equation (135) can now be solved for x e,6 . The

calculated values of a f e , D6 and x e,6 for MgCH 3 are listed in table 6. These calcula-

tions illustrate how, if the spin± orbit splitting of the origin and the fundamental of a

Jahn± Teller active mode are both resolved, values for the spin± orbit and Jahn± Teller

coupling constants can be obtained.

If, in addition to the spin± orbit splittings, the Coriolis coupling of the two levels

are also resolved, then additional information about the molecule can be obtained.

Approximate expressions for the projection of the vibronic angular momentum, in

terms of the molecular parameters f e and f 6 and the spin± orbit quenching parameters

d1/ 2,1 and d1/ 2,2 , are given by equation (108):

f t,00 = f ed1/ 2,1
1
2
f 6 d1/ 2,1 1 , (140)

f t,61 = f ed1/ 2,2
1
2 f 6 d1/ 2,2 1 . (141)

As before, the left-hand sides of equations (140) and (141) are known from the

experimental analyses and d1/ 2,1 and d1/ 2,2 have been calculated from the spin± orbit

splittings via equations (136) and (137). These two equations are also a 2 3 2 system

of equations in two unknowns: f e and f 6. Solving them leads to

f 6 = 2
d1/ 2,2 f t,00 d1/ 2,1 f t,61

d1/ 2,2 d1/ 2,1

(142)

f e =
f t,00 +

1
2 f 6(d1/ 2,1 1)

d1/ 2,1

. (143)

Equation (139) can now be solved for a. The complete set of parameters determined

in this fashion for M gCH3 is shown in table 6. Because the calculated values of D6

are small (about 0.05 or less), the equations given above should be fairly accurate.

† The factor d j ,nj is de® ned as an expectation value of ÃH SO for the vibronic eigenfunction
including Jahn± Teller eŒects. One might therefore expect that the validity of the quenching

parameter is limited to cases where ÃH SO is small compared with Jahn± Teller eŒects, since for

larger values of ÃH SO its non-diagonal matrix elements will also be important. However, as

equations (67)± (71) show, ÃH SO has no oŒ-diagonal elements in the original basis. Thus, so

long as ÃH SO is small compared with the diŒerence in energies of the original basis set, d j ,nj

as de® ned by equation (80) remains approximately correct. In other words, the spin± orbit

splitting will be approximated reasonably well by a f ed j ,nj so long as x e,i @ a f e , which is a
limit of validity of the eigenfunction expansion of equation (80). This latter condition is easily

ful® lled for all the MCH3 radicals except CdCH3 .
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Table 6. Spin± vibronic constants of the A 2 E states of the organometallic monomethyl
radicals.a

Parameter MgCH3 CaCH3 ZnCH3 CdCH3

v2 and v3

x e,2 998 1060 1019

x e,3 464 467 401

v6

x e,6 633 767 749 710

D6 0.0282 0.02 0.05 0.02

Spin± orbit and Coriolis constants

a f e 32.23 78 317 950
a 32.56 Ð Ð Ð

f e 0.99 Ð Ð Ð
f 6 0.25 Ð Ð Ð

« total 18.5 15.2 38.8 14.2

« so
total 15.0 0 0 0

Reference [70] [96] [91] [95]

a Only v2 , v3 and v6 have been observed for these radicals.

We have veri® ed the validity of these results by performing the full spin± orbit Jahn±

Teller calculation using the parameters calculated via the perturbation equations.

As expected, the agreement is quite good.

We can now use the results of table 6 to compute the spin± vibronic eigenfunctions

and eigenvalues numerically. As expected and as shown by table 7, the calculated

and observed energies agree quite well. However, the calculation also gives us the

eigenfunctions, which allows us to directly compute f
+
t and f t for each observed

level and hence D f t for each spin doublet. These calculated values are compared with

the òbserved’ values obtained from equations (119) and (121) and assuming that

the observed value of « eŒ
aa has negligible contributions from « 0

aa . The close agreement

between the òbserved’ and calculated values lends strong support to the assumption

that the ànomalously’ large experimental value of « eŒ
aa is independent of the direct

contribution « 0
aa to the spin± rotation coupling when one àllows’ for diŒerent spatial

wavefunctions in the two spin states. As was previously suggested (see equation

(111)), the value of « eŒ
aa can be rationalized in terms of a vibronic contribution,

« 2v
aa , to the spin± rotation coupling caused by second-order eŒects of the spin± orbit

coupling. Alternatively the eŒect can be attributed to the diŒerent values of f
+
t and

f t for the vibronic angular momentum in the two spin states.

6.1.2. CaCH3 and ZnCH3

The spin± vibronic structure of the excited states of the CaCH 3 and ZnCH3

radicals are not very diŒerent from that for MgCH3 , with the exception that the

spin± orbit coupling constants are larger. The perturbation expressions for the energy

levels can still be used to a good approximation, as they were for MgCH3 . Tables 5

and 6 give the experimentally observed parameters and those calculated from a ® t to

the perturbation expressions, and the spin± orbit and Jahn± Teller coupling constants

derived therefrom. As with MgCH3, the agreement between the experimentally
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observed energies and those calculated from exact spin± orbit Jahn± Teller coupling

calculations is excellent (table 7). Likewise, the calculated change in the vibronic

angular momentum accurately predicts the experimentally observed s̀pin± rotation’

coupling constant « eŒ
aa .

6.1.3. CdCH 3

The spin± vibronic coupling is quite diŒerent for the excited state of CdCH3.

For the lighter radicals, the spin± orbit splitting of each vibronic level could easily

be discerned by the doublet structure in the electronic excitation spectra. However,

for CdCH 3, the spin± orbit coupling constant a f e (about 1000 cm 1) is greater than

the vibrational frequency of the degenerate mode. Therefore, the electronic spectra

look rather peculiar in comparison with those for MgCH 3, CaCH 3, and ZnCH3 in

that the vibrational structure is smaller than the spin± orbit coupling structure. This

also means that the traditional expectations of Jahn± Teller coupling may have to

be modi® ed.

As with the others, the spin± orbit splitting of the origin and the relative energies

of the fundamentals of v6 will be the levels that provide the greatest and most

readily attainable information about the Jahn± Teller parameters. If the perturbation

expressions that were used so successfully for M gCH3 , CaCH3 and ZnCH3 are

applied, the following constants for CdCH3 are determined: x e,6 = 588 cm 1, D6 =

0.053 and a f e = 1278 cm 1. While the vibrational frequency and linear Jahn± Teller

coupling constant are of the same order as those for the other organometallic

monomethyl radicals, the spin± orbit coupling constant is quite a bit larger. While

this is to be expected, as spin± orbit coupling scales approximately as Z 4 , the spin±

orbit constant A in the A 2 P state of CdH is only 1013 cm 1 [97] . If anything, the

spin± orbit coupling in the A 2E state of CdCH 3 should be smaller than that in the A
2 P state of CdH and not larger. Given the much larger spin± orbit interaction, it is

not particularly surprising that the perturbation expressions should fail for CdCH3 .

However, the parameters obtained from the perturbation analysis can be used

as a starting point for an analysis of the spectrum using full spin ± orbit Jahn± Teller

calculations. The results of this analysis are shown in ® gure 17, using the parameters

listed in table 6. While the Jahn± Teller coupling constant did not change very much,

the vibrational frequency and spin± orbit coupling parameter did. Most signi® cantly,

the value of a f e = 950 cm 1 is now less than the spin± orbit coupling constant of

CdH.

As discussed earlier, the decrease in the spin± orbit constant from CdH to CdCH3

is readily explained by two phenomena. First, it is expected that the addition of

three oŒ-axis hydrogen atoms in CdCH 3 will decrease f e , which is unity for the

diatomic CdH. Secondly, the a constant in CdCH3 will be diŒerent from A for CdH,

as the electronic wavefunction, which has its major contribution from cadmium, will

be slightly more delocalized in the case of CdCH3 . Because the atomic spin± orbit

parameters for carbon and hydrogen are much smaller than that for cadmium,

any delocalization onto these atoms will decrease the molecular spin± orbit coupling

constant.

Because the spin± orbit coupling in the A 2E state of CdCH3 is larger than

the frequency of the Jahn± Teller mode, ® gure 17 shows that many of the normal

generalizations about the vibronic structure do not hold. For example, the observed

spin± orbit splitting of the origin is normally smaller than the molecular spin± orbit

coupling constant a f e owing to the quenching of the orbital angular momentum
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Figure 17. Vibronic energy level diagram for the A 2E state of CdCH3 . (a) harmonic
oscillator energy levels for vi % 2, (b) calculated energy levels using the parameters

of table 6, (c) experimentally observed energy levels, (d) leading terms in the spin±
vibronic wavefunction. Only the wavefunctions for j > 0 have been shown, for each

level there is a second wavefunction with j < 0 with identical coe� cients, but opposite
signs on L , l and S .

by Jahn± Teller coupling. However, in CdCH3 , the observed spin± orbit splitting

(1008 cm 1) is actually greater than a f e (950 cm 1). Additionally, the energy of the

f̀undamental’ of v6, 61 (e3/ 2 ) is normally greater than the equilibrium frequency x e,6.

However, in CdCH3 the reverse is true: the lower spin component of v6 is at 650 cm 1

while the equilibrium frequency is 710 cm 1. Both of these eŒects are caused by the

fact that the spin± orbit coupling constant is greater than the vibrational frequency,

which places the upper spin component of the origin at higher energy than the

fundamental of the vibrational mode. Jahn± Teller coupling mixes these two levels,

increasing the diŒerence in energy between them. In the normal case, this decreases

the energy of the upper spin component of the origin and increases the energy of

the fundamental of the vibrational mode. However, in CdCH 3 the v6 = 1 level is

decreased in energy and the upper spin component of the origin is increased in

energy, leading to the observed energy pattern.

For the lower energy spin component of the origin, the calculated and observed

vibronic angular momentum components (table 7) agree very well. However, they

do not agree for the upper spin component, although the experimental precision of

these numbers is low. The most likely explanation for this disagreement is that v5

is also active but is not included in the calculation. This explanation would also

explain the poor agreement between the calculated and observed intensities in the

electronic spectra at higher frequencies [95].

It is useful to conclude this section by clarifying some of the history of the

CdCH3 analysis. In the original report of the rotationally resolved LIF excitation

spectrum [94] , only the lower spin-component of the origin (labelled 00 (e1/ 2) in

® gure 17) and the lower spin component of the fundamental of v6 (labelled 61 (e3/ 2 )

in ® gure 17) were observed. (All the other levels, except two totally symmetric modes,

are dark and observable only by a ¯ uorescence depletion technique [95].) Because
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these were the only two levels observed in the LIF spectrum, they were assigned and

analysed as the two spin components of the origin. This misassignment was possible

because the upper spin component of the origin will have the same symmetry, e3/ 2

under the spin-double group, and hence a similar rovibronic structure as the lower

spin component (61(e3/ 2)) of the fundamental of the degenerate mode (® gure 17).

The correct assignment was made possible by a later ZEKE-PFI study, in which the

diŒerent Franck± Condon factors for ionization for these two levels led to their true

identi® cation [92] .

In the rotationally resolved LIF experiment, an extremely large spin± rotation

constant, « eŒ
aa = 15.8 cm 1 , was reported [94] . The explanation of this phenomenon

is not coupling to other electronic states of the molecule, as was speculated in

that paper, but rather alteration of the Coriolis coupling constants of the two spin

components by simultaneous spin± orbit and Jahn± Teller coupling. Despite the earlier

misassignment, the observed value of « eŒ
aa still re¯ ects the diŒerence in the Coriolis

coupling constants of the two levels, 1
2
, 1, 1

2
and 1

2
, 1, 1

2
, that were analysed,

since they form a pair of e1/ 2 and e3/ 2 levels. Using equation (121), the observed

value of « eŒ
aa of 15.8 cm 1 corresponds to D f t = 1.59. The full spin± orbit Jahn± Teller

calculation of the eigenfunctions (table 7), allows us to calculate independently a

value for D f t of 1.85. This value is in reasonable agreement with that obtained from

the s̀pin ± rotation’ constant. The small discrepancy between them is most probably

caused by the neglect of Jahn± Teller activity in v5 . Finally, we note that the LIF

study can be viewed as misassigning the lowest observed level above the e1/ 2 origin to

its corresponding spin component. However, given the spin± vibronic eigenfunctions

shown in ® gure 17, a fairer view is that it merely assumed that what in reality was

the second most important contribution |+ ñ |00 ñ 1
2

to the eigenfunction of the

level was actually the most important.

6.1.4. Summary of the metal monomethyl radicals

When dealing with the spectroscopy of Jahn± Teller active molecules, several

issues must be borne in mind. First, even to begin to assign and analyse the

spectrum correctly, one needs to be aware of the spectral patterns that may result

from the combined eŒects of Jahn± Teller and spin± orbit coupling. Then one must be

able to use the spectra to obtain detailed quantitative information about a number

of molecular parameters that either determine the Jahn± Teller and spin± orbit eŒects

or are in turn clearly aŒected by them. From these parameters the nature and extent

of the Jahn± Teller distortion and stabilization can be determined.

The A 2E states of the MCH3 radicals have been fairly extensively, although

not completely, characterized experimentally. They all fall into the category of small

Jahn± Teller eŒects compared with spin± orbit coupling. Physically this situation exists

because the ùnpaired’ electron is localized in a metal orbital that is essentially an

atomic p orbital. Hence, the orbital is only slightly perturbed by the lowering of

the symmetry by the methyl group that ultimately is the source of the Jahn± Teller

eŒect.

Correspondingly, the spectra are fundamentally those of symmetric top molecules

with well de® ned spin± orbit doublets. The Jahn± Teller eŒect is primarily manifested

in the spin± vibronic energy level structure via the partial quenching of the spin±

orbit coupling, which in all the radicals, except CdCH3 , is well described by the

generalized Ham reduction factor d j ,nj . Just as the spin± vibronic eigenvalues are
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modi® ed by Jahn± Teller coupling, so are the spin± vibronic eigenfunctions, which

determine the vibronic angular momentum f
±
t , which can be measured from the

rotational structure of the spin± vibronic levels.

For MgCH3, experimental measurements of the spin± vibronic levels combined

with information from this rotational structure allow a rather complete description

of the Jahn± Teller coupling. For the other radicals the experimental information

is somewhat less extensive, nonetheless, considerable information about the Jahn±

Teller eŒect in these radicals is available. In all cases, there appears to be signi® cant

Jahn± Teller activity in only mode, v6 , nominally the metal methyl rock. This is not

particularly surprising since the orbital degeneracy is mostly localized on the metal

atom, thus the other two e modes, v4 and v5, are expected to have little in¯ uence on

the electron on the metal.

We see that the activity in even the rock mode is slight, with Di always about 0.05

or less. Nonetheless even such a small Jahn± Teller coupling can cause signi® cant

quenching of the spin± orbit interaction. In the vibrationless level (excited v6 levels

have greater quenching) the spin± orbit splitting is reduced by 11% , 7% and 20%

respectively, for the series MCH3 (M = Mg, Ca or Zn). For CdCH3 , the spin± orbit

splitting of the òrigin’ is actually enhanced by 6% because a f e is greater than x e,6.

From table 7 we also note that the spin± vibronic eigenfunctions predict a substantial

eŒect on the Coriolis coupling from the Jahn± Teller induced modi® cation of the

vibronic angular momentum f t . It is indeed a reassuring check on our overall

understanding of the system that, for the most part, these predictions are well

con® rmed by direct measurements of the relevant parameters from the rotationally

resolved spectrum.

Finally the spectral analyses give us a relatively clear picture of the distortion

of the A 2E PES by the Jahn± Teller eŒect. In all cases, the hypothetical PESs for

the spinless molecules show at least a small minimum at a distorted con® guration.

However, the more meaningful PES that includes spin± orbit coupling shows that

for all the radicals, with the exception of MgCH3 , there is no net stabilization and

the minimum of the PES remains at the symmetrical C3v con® guration for all the

normal modes. Thus the correct picture of the PES is provided by ® gure 2(h), where

one notes that neither the 2E1/ 2 nor the 2E3/ 2 PES has a minimum other than at the

C3v point. However the lower surface (in this case, 2E1/ 2 ) is much ¯ atter around the

symmetrical minimum than it would be if the Jahn± Teller eŒect were absent. For

MgCH3, ® gure 2(g) more appropriately represents the slice of the potential along

the v6 coordinate. However, even here the stabilization is quite small, amounting to

only about 15 cm 1 .

6.2. Methoxy radical family

The methoxy radicals, CH3O, CH3S, CF3O and CF3S, are all characterized by

a X 2E ground state and a lowest excited A 2A1 state. They have all been observed

by LIF excitation spectroscopy but its eŒectiveness in characterizing the spin±

vibronic structure of the X 2E state has been limited. In jet-cooled spectra, only the

vibrationless level is populated and the information about the Jahn± Teller coupling

in the ground state is usually limited to that yielded from the rotational structure.

The rotational structure is also provided, often in greater detail, via microwave and

laser magnetic resonance (LM R) experiments, which have been performed for CH3O

and CH3S.

While the rotational information is very valuable, direct information about the
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spin± vibronic energy levels is essential. For the most part, this information has been

obtained from laser-excited dispersed ¯ uorescence experiments. These experiments,

while somewhat limited in resolution, are nonetheless superb for providing an overall

picture of the spin± vibronic structure of the X states of the methoxy family. A limited

amount of higher resolution stimulated emission pumping data are also available

for CH3O.

6.2.1. CF3S

The dispersed ¯ uorescence spectra from the A state of CF3S have been obtained

in our laboratory and illustrate nicely the analysis of such data [91] . The spectra

are dominated by transitions to the totally symmetric modes, just as is the case for

the excitation spectrum. The spectra also contain a number of lines that cannot

be ascribed to totally symmetric modes and that therefore must be assigned to the

Jahn± Teller active modes.

Simulations of the dispersed ¯ uorescence from the origin and from v ¢
6 = 1 in the

excited state are shown in ® gure 18. These simulations used the parameters given

in table 8. Assignments of several of the bands due to v6 could be easily made by

a comparison between the spectrum from the origin and that from pumping one

quantum of v6 in the excited state. The peaks that are present only in the spectrum

from 61 must be assigned to the j = 3
2

levels. Mode 6 accounts for several of the low

energy peaks in the spectra, but not all. The rest were identi ® ed as predominantly

v5 , though there appears to be very little Jahn± Teller coupling in this mode.

As ® gure 18 shows, linear Jahn± Teller coupling in v6 and spin± orbit coupling

can adequately reproduce the experimental spectra (see also table 8). Because the

spin± orbit splitting is so large, quadratic coupling in v6 would not appear as a

splitting in the j = 3
2

levels but rather as a diŒerent splitting from that predicted by

just linear Jahn± Teller and spin± orbit coupling. There is no spectral evidence that

this is the case. Quadratic Jahn± Teller coupling, if present, must be very small in v6.

As table 8 shows, there was not enough information available in the dispersed

¯ uorescence spectra for D5 , D4 and x e,4 to be determined, even though the funda-

mental of v5 is observed in the spectrum. As we shall see for the other methoxy

radicals, it is generally the case that v6 is the mode that carries most of the Jahn±

Teller activity, with v5 and v4 having smaller Jahn± Teller eŒects. The spin± orbit

coupling constant is in line with that for the diatomic radicals SH and SF (table 8).

The stabilization induced by the Jahn± Teller coupling illustrates the marked

diŒerence between an analysis that does not include spin± orbit coupling and one

that does (equations (56) and (66), table 8). If the quenching of the stabilization

energy by spin± orbit coupling is not included in the calculation, a value of 77 cm 1

is obtained. While this value is relatively small, it is not negligible. However, when

spin± orbit coupling is included this value drops to exactly zero. Thus, there is no

asymmetric minimum in the PES and ® gure 2(h) is an appropriate representation of

the potential for the ground state of CF3S.

Unlike the organometallic radicals, a rotationally resolved spectrum of both

spin components of the vibrationless level of the ground state of CF3S has not

been performed, since the upper spin component is not populated in the jet-cooled

experiment. Therefore, rotational parameters are available only for the lower energy

spin component (table 9) [107]. As such, the values of A f 0
t and « eŒ

aa could not be

determined independently, only the diŒerence A f 0
t « eŒ

aa / 4. This means that the

rotational information relevant to the Jahn± Teller coupling is quite limited. If we
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Table 8. Spin± vibronic constants of the X 2E states of the methoxy family of radicals.

Parameter CH3 O CD3O CH3S CF3 O CF3S

Totally symmetric modes

x ¢ ¢
e,1 2776 1215 1142

x ¢ ¢
e,2 1359 995 1313 977 765

x ¢ ¢
e,3 1050.5 1036 727 527 449

Degenerate modes

x ¢ ¢
e,4 2835 2100 Ð Ð Ð

D4 0.02 0.03 Ð Ð Ð
K 4 Ð Ð Ð Ð Ð

x ¢ ¢
e,5 1417 1070 Ð 600 536

D5 0.075 0.17 Ð 0.04 < 0.01
K 5 0.032 0.03 Ð Ð Ð

x ¢ ¢
e,6 1065 825 913a 465b 320

D6 0.24 0.20 0.045 0.45 0.24

K 6 0.14 0.16 Ð 0.05 Ð

a f e 145 145 340 140 360

« total 419 410 41 233 77

« so
total 370 367 0 203 0

Spin± orbit constants for diatomic radicals

OH OD SH OF SF
A 139 139 377 196 398

Reference [99] [99] [99] [100, 101] [102, 103]

a Fixed at the ab initio value [98].
b For CF3O an anharmonicity in v6 was observed, x exe = 8 cm 1 .

Table 9. Rotational constants for the X 2 E states of the methoxy family of radicals.a

Parameter CH3O CH3 S CF3O CF3 S

A ¢ ¢ 5.206 5.68 0.1894 0.18886b

B ¢ ¢ 0.931 682 5 0.449581 0.19754 0.11108
a f ed1 / 2 ,1 61.974 255.463 41 160

A ¢ ¢ f 0
t 1.773 3.523 Ð Ð

f 0
t 0.341 0.620 Ð Ð

« eŒ
aa 1.3533 3.809 0.08c 0.433c

A ¢ ¢ f 0
t

« eŒ
aa

4
2.1113 4.48 0.04961 0.1430

h1 0.00252 0.000198 % 0.008 % 0.026

h2 0.0461 0.022 % 0.024 % 0.041
Reference [104] [105] [106, 107] [107]

a The parameters for CH3 O and CH3 S were ® t for both spin components of the

vibrationless level, whereas only the lower energy spin components of CF3O and CF3S were
analysed. All parameters are in cm 1 , except f 0

t , which is dimensionless.
b Fixed at the value from an ab initio calculation.
c Predicted by the spin± orbit Jahn± Teller calculations using the parameters in table 8 and

estimates for f e and f 6 .
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504 T. A. Barckholtz and T. A. Miller

Figure 18. Dispersed ¯ uorescence of the CF3 S radical: (a) experimental spectrum from the
00 band, (b) simulation of the 00 spectrum, (c) experimental spectrum from the 61

band, (d) simulation of the 61 spectrum. Transitions to the totally symmetric modes
(® lled) are not included in the simulation.

assume that the Coriolis coupling constant f 6 in the ground state is the same as that

in the excited state, which has been determined experimentally (table 10) [107], and

assume that f e = 1, we can predict a value of « eŒ
aa using the computed spin± vibronic

eigenfunction and equation (118). This predicted value is given in table 9.

6.2.2. CH3S

The dispersed ¯ uorescence spectra of the CH3S and CD3S radicals were ® rst

reported by Suzuki et al. [112] . These spectra showed that the spin± orbit splittings
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Table 10. Vibrational frequencies of the A 2A1 states of the methoxy family of radicals.a

Parameter CH3 O CD3O CH3 S CF3 O CF3 S

T00 31 615 31 5554 26 399 28 531 26 393

Totally symmetric modes

x ¢
e,1 2947.8 998 (3.64)

x ¢
e,2 1313.2 (7.4) 967 1098 740 (0.50)

x ¢
e,3 677.2 (4.6) 660 401 635 314.0 (2.40)

Degenerate modes

x ¢
e,4 3077.8 2326

f ¢
4 0.088

x ¢
e,5 1403.0 1045 626 548

f ¢
5 0.14 0.39 0.65

x ¢
e,6 951 (7) 695 635 426 277 ( 0.9)

f ¢
6 0.12 0.037 0.26

References [108] [109] [110] [107] [111]

a Where available, x exe is listed in parentheses. If no value in parentheses is given,

insu� cient transitions were observed to determine x e and x exe , the value listed is x 0 .

of the origin were 280 and 260 cm 1 for CH3S and CD3S respectively, in accord

with the laser electron photodetachment spectra recorded prior to the LIF spectra

[113] . The dispersed ¯ uorescence spectra were vibrationally and rotationally very hot

and the spin± orbit splittings of the origin could be determined to an accuracy of only

20 cm 1 . The error on the spin± orbit splitting of CH3S was reduced when microwave

[114] and high-resolution LIF [105] spectra were taken. The best experimental value

for the spin± orbit splitting of CH3S is 255.5 cm 1, which was derived from a

simultaneous ® t of the microwave and high-resolution LIF data [105].

The dispersed ¯ uorescence spectra were later retaken by Lee’s group [110] , who

obtained them in a free-jet expansion rather than a static gas cell. The vibrational

and rotational cooling of the free jet meant that much more information about the

vibrational modes could be obtained. As usual, the vast majority of the features in

the dispersed ¯ uorescence spectra could be assigned to the totally symmetric modes.

The spectra showed only marginal intensity to the Jahn± Teller modes, and only the

fundamental frequencies could be determined. Jahn± Teller coupling is clearly very

small in CH3S, otherwise greater intensity would be observed in the Jahn± Teller

modes.

While for CF3S and the other methoxy radicals a number of vibronic energy levels

owing solely to the Jahn± Teller active modes appear in the dispersed ¯ uorescence

spectra, this is not the case for CH3S. How then is a quantitative determination

of the Jahn± Teller and spin± orbit coupling to be made in such a molecule? The

answer lies in the experimental determination of the spin± orbit splitting in two

isotopomers, CH3S and CD3S, by Suzuki et al. [112]. Because the masses of the nuclei

are diŒerent, the frequency of the mode responsible for the Jahn± Teller coupling

changes signi® cantly. However, the electronic potential in which these nuclei vibrate

is assumed not to change, nor is the spin± orbit coupling parameter a f e expected

to be diŒerent between the two isotopomers. The determination of the Jahn± Teller
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506 T. A. Barckholtz and T. A. Miller

constants then relies upon a determination of the vibrational frequencies of the

Jahn± Teller modes, and which mode or modes are responsible for the Jahn± Teller

activity.

The application of this logic to a system where the spin± orbit splitting is known

for two isotopomers is readily derived. First, the assumption that the spin± orbit

coupling constants a f e are the same for each isotopomer leads to the following

equation:

a f ed1/ 2,1
H

a f ed1/ 2,1
D

=
dH

1/ 2,1

dD
1/ 2,1

. (144)

The values in parentheses on the left-hand side of equation (144) are the observed

spin± orbit splittings of the vibrationless level of each isotopomer, while the parame-

ters on the right-hand side are the spin± orbit quenching parameters of equations (80),

(81) and (83). Second, because the Jahn± Teller stabilization energy is independent

of the nuclear masses, equation (56) becomes

« i = D
H
i x

H
e,i = D

D
i x

D
e,i. (145)

Assuming that the Jahn± Teller coupling is small, the substitution of d1/ 2,1 = 1 4Di

(equation (83)) into equation (144) can be made. Solving the 2x2 system of equations

for DH
i yields

D
H
i =

1

4

a f ed1/ 2,1
H

/ a f ed1/ 2,1
D

1

a f ed1/ 2,1
H

x H
e,i/ a f ed1/ 2,1

D
x D

e,i 1
. (146)

Thus, if the spin± orbit splitting of the vibrationless level is known for two diŒerent

isotopomers, and the harmonic oscillator frequencies x H
e,i and x D

e,i, or at least their

ratio, can be estimated by another means, than a reasonably accurate determination

of the Jahn± Teller constants can be made. The accuracy and precision of the

determination depend not only upon the precision of the measured spin± orbit

splittings but also on the determination of the oscillator frequencies and on deducing

which mode is Jahn± Teller active.

Bent [115] originally applied this logic to CH3S, though in somewhat diŒerent

form. He assumed that v5 is the Jahn± Teller active mode in CH 3S. He derived

oscillator frequencies x H
e,5 and x D

e,5 by analogy to the frequencies for CH3O, CD3O,

CH3SH and CD3SH and by invoking the Teller± Redlich product rules for isotopic

frequencies [116]. In his calculations, he set x H
e,5 to 1410 cm 1 and x D

e,5 to 1040 cm 1.

Using the values for the spin± orbit splitting from the room temperature LIF spectra

[112] , he deduced Jahn± Teller coupling constants of DH
5 = 0.065, DD

5 = 0.09, and a

spin± orbit coupling constant a f e of 356 cm 1 . The Jahn± Teller stabilization energy

via equation (56) is then approximately 92 cm 1 . Invoking equation (66) reduces the

real stabilization energy to zero, just as was the case for CF3S.

Is v5 really the mode responsible for the Jahn± Teller coupling and the resultant

partial quenching of the spin± orbit coupling? Bent chose v5 because, at the time

of his publication, it was believed that v5 was the mode responsible for the Jahn±

Teller coupling in CH3O. However, the detailed stimulated emission pumping (SEP)

spectra of Temps’ [109] group have shown that most of the Jahn± Teller coupling

in CH3O is due to v6 , and not v5 , and our analysis and ab initio calculations [98]

support this change. We therefore feel it is necessary to revise Bent’s determination

of the Jahn± Teller coupling in CH 3S, using v6 instead of v5.
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Rather than derive frequencies from other molecules and from isotopic shift rules,

we have calculated the harmonic frequencies via ab initio methods [98]. For CH3S,

we calculated x H
e,6 to be 913 cm 1 and x D

e,6 to be 688 cm 1 . (For comparison with

Bent’s derivation of the harmonic frequencies for v5 , we calculate x H
e,5 = 1422 cm 1

and x D
e,5 = 1029 cm 1, in very good agreement with the values that he estimated.)

Using these values for the harmonic frequencies of v6, we determine DH
6 = 0.045,

DD
6 = 0.062, and a f e = 341 cm 1. The resultant Jahn± Teller stabilization energy, in

the absence of spin± orbit coupling, is only 41 cm 1 , compared with Bent’s value of

90 cm 1 . In either case, the Jahn± Teller distortion is overwhelmed by the spin± orbit

coupling so that there is no net Jahn± Teller stabilization for CH3S.

Information relevant to a decision on which mode accounts for the Jahn± Teller

activity in the radical can be obtained from the observed spin± rotation constant

(table 9) [105] . While the Coriolis constants for the individual vibrational modes in

the ground state of CH 3S have not been determined, the calculated values of f
±
t

depend almost exclusively on the value of f e , with only a minor dependence on the

values of f 6 or f 5. Using Bent’s spin ± orbit and Jahn± Teller coupling constants, we

calculate D f t = 0.152 while, with our constants, D f t = 0.225. The experimental

value, determined via equation (118), is 0.336. While not a conclusive result, the

comparison of these constants supports the assignment of v6 as the Jahn± Teller active

mode in CH3S. This assignment is also consistent with the observed Jahn± Teller

coupling in the other methoxy radicals (table 8).

6.2.3. CF3O

The spectroscopy of the sulphur-centred radicals CF3S and CH3S is relatively

straightforward to interpret because the spin± orbit coupling is so large in comparison

with the Jahn± Teller coupling. The situation is quite diŒerent for the oxygen-centred

radicals, in which a f e is only approximately half as large, while the Jahn± Teller

coupling probably increases. This means that the approximations of perturbation

theory no longer work very well and the only way to analyse the spectra is by the

use of complete spin± vibronic calculations.

The LIF spectrum of the CF3O radical was ® rst observed by Li and Francisco

[117] in a static gas cell. The spectrum was recorded in our laboratory using a free

jet expansion to cool the radicals vibrationally and rotationally. The rotationally

resolved spectra of the origin, 31
0 , 61

0 and 51
0 bands were also obtained [106, 107],

together with their dispersed ¯ uorescence spectra [118] .

The ® rst indication of Jahn± Teller coupling in the ground state of CF3O is the

existence of intensity in the excitation spectrum to the degenerate modes v6 and

v5 , which were rotationally resolved and analysed to support their identi® cation

as degenerate vibrations [107] . In the absence of Jahn± Teller coupling, these levels

have zero intensity, as only the totally symmetric modes may be observed. Most

information about the spin± orbit and Jahn± Teller coupling comes from the dispersed

¯ uorescence spectra [91] , which are shown in ® gure 19.

Transitions to fundamentals and combinations of the totally symmetric modes

v1 , v2 and v3, can be easily identi® ed in the dispersed ¯ uorescence from v ¢ = 0

by their approximately constant spin± orbit splittings. The three totally symmetric

modes and one combination of them are observed in the spectra, with an average
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508 T. A. Barckholtz and T. A. Miller

Figure 19. Dispersed ¯ uorescence of the CF3 O radical: (a) experimental spectrum from

v ¢ = 0, (b) experimental spectrum from pumping 61 . The ® lled peaks either are
assigned as totally symmetric modes or are due to emission from species in the

expansion that are excited by spontaneous emission from the laser source or to
collisional relaxation of the excited state.

splitting of 25 ± 3 cm 1.† Signi® cant insight into the Jahn± Teller coupling in this

molecule comes from the comparison of the dispersed ¯ uorescence from the 00 and

61 bands. As discussed in section 5, only those levels with j = ± 1
2

will be observed

in the ¯ uorescence from the 00 band, whereas both j = ± 1
2

and j = ± 3
2

will be

observed in the ¯ uorescence from the 61 level. The comparison of these two spectra

clearly shows a pair of levels in the 61 spectrum, at 249 and 306 cm 1, that are

not in the 00 spectrum. The splitting of these j = ± 3
2

levels is 57 cm 1 , which is

signi® cantly larger than the splitting of the totally symmetric levels. As we discussed

earlier, the only possible way for this to occur is by quadratic Jahn± Teller coupling.

The quadratic Jahn± Teller coupling constant K 6 can therefore be deduced by ® tting

the splitting of these two levels. The other constants can be determined by ® tting

the position of these two levels relative to the origin.

The spin± orbit and Jahn± Teller coupling constants that have been derived from

the analysis of these spectra are given in table 8. The value of a f e is 140 cm 1,

which lies between the values of A in the X 2 P states of the OH radical ( 139 cm 1 )

[99] and the OF radical ( 196 cm 1 ) [100, 101]

Lastly, we consider the size of the spin± rotation constant induced by spin± orbit

and Jahn± Teller coupling. Because only the lower spin component of the origin has

been rotationally resolved [107], only the combination A f
+
t « eŒ

aa / 4 was determined

(table 9). Given our spin± orbit Jahn± Teller wavefunction, we can predict a value of

« eŒ
aa using equation (118). For this calculation, we must estimate the electronic and

† However, the spin± orbit splitting of the origin was determined to be 41 cm 1 . We know
of no reason why the spin± orbit splitting should change so dramatically from the origin to

the fundamentals of the symmetric modes and suspect that the value for the origin is skewed
because of very strong laser scatter on one component in the dispersed ¯ uorescence spectrum.

For this reason, we take 25 cm 1 as the value for the spin± orbit splitting of the origin.
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vibrational Coriolis constants f e and f i (i = 4, 5, 6). We assume a value of f e = 0.95,

which is only slightly smaller than unity, its maximum value in the limit of cylindrical

symmetry. The vibrational Coriolis constants f 5 = 0.39 and f 6 = 0.037 have been

determined for the excited state of CF3O [107] . From the calculated spin± vibronic

eigenfunction, the following two equations are computed for the Coriolis coupling

constants for the two spin components of the origin:

f
+
t = 0.381 f e + 0.285 f 6 + 0.023 f 5 = 0.36, (147)

f t = 0.153 f e + 0.393 f 6 + 0.027 f 5 = 0.15. (148)

These two equations illustrate how complex the function that determines the Coriolis

constants can be. These calculations predict a value of 0.08 cm 1 for « 2v
aa , which

is much smaller than the values for CH3S and CH3O (table 9). The diŒerence is

that « 2v
aa is proportional to the A rotational constant, which is 27 times smaller for

CF3O. If this scaling is taken into account, the value of « 2v
aa induced by spin± orbit

and Jahn± Teller coupling is comparable with those in CH3O and CH3S.

6.2.4. CH3O

The methoxy radical CH3O is by far the most exhaustively studied Jahn± Teller

radical. Spectroscopic investigations of it include emission [119, 120] , LIF, both of

the excited state [46, 47, 108, 121] and dispersed ¯ uorescence studies of the ground

state [121± 123] rotationally resolved LIF [104] , SEP studies of the ground state and

its isomerization to CH2OH [124± 126], electron spin resonance [127], microwave

absorption [74] , LM R [72, 73] , laser photodetachment of the anion [113] , ¯ uores-

cence depletion of the excited state [128], and fast beam photofragmentation of the

excited state [129, 130]. A number of these experiments have also been performed

on the isotopomer CD 3O: LIF [120, 121, 131], SEP [109] , laser photodetachment of

the anion [113] , ¯ uorescence depletion [131] and photofragmentation [130]. For the

isotopomer 13CH 3O, the microwave spectrum [85, 86] and dispersed ¯ uorescence

spectra [123] have been reported. A more exhaustive list of the earlier investigations

of this radical has been given in [120].

The methoxy radical has also served as a benchmark molecule for the evaluation

of ab initio methods. Most of these calculations have focused on the thermochemistry

of the radical and these calculations have been reviewed recently [132] . A few

calculations have been reported on the excited states and photochemistry of the

methoxy family of radicals [133± 135] . One attempt has been made at calculating the

Jahn± Teller coupling constants Di and the Coriolis coupling constants f i (i = 4± 6)

[136] . The spin± orbit coupling constant [137, 138] and hyper® ne coupling constants

[139, 140] have also been analysed via ab initio calculations. We shall more fully

discuss these calculations, and our own ab initio calculations, in a subsequent

publication [98] .

The Jahn± Teller coupling in the X 2E state of CH3O is manifested most strongly

in the energies of the degenerate vibrational modes. The energies of these levels

are observed in the dispersed ¯ uorescence spectra and the SEP spectra and we

shall concentrate on the analysis of these spectra. However, as we saw for the

other methoxy radicals and the organometallic monomethyl radicals, the Corio-

lis coupling constants and spin± rotation constant are also aŒected by Jahn± Teller

coupling, as are the much smaller rotational parameters h1 and h2. The methoxy

radical is a rare example for which all of these parameters have been obtained,
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510 T. A. Barckholtz and T. A. Miller

to quite good accuracy and for several diŒerent isotopomers. We shall summarize

the experimental data and then discuss the various interpretations of the Jahn±

Teller coupling in this radical that have been proposed. We shall ® rst summarize

the vibrational results for the A 2A1 excited state, as these vibrational frequen-

cies can be used as a starting point in the Jahn± Teller analyses of the X 2E

state.

6.2.4.1. Vibrational frequencies of the A 2A1 state of CH 3O. A comprehensive ex-

perimental investigation and analysis of the vibrational structure of the excited state

of the methoxy radical was recently reported [108, 128] . The vibrational frequencies

of all six modes were determined (table 10), including a complete analysis of the

Fermi resonance between v2 and 2v3 . There were several consequences of this work

for the Jahn± Teller analysis of the ground state. First, while the C ± O bond lengthens

signi® cantly, the C ± H bond length and O± C ± H bond angle do not, which means

that the vibrational frequencies of the ground state and excited state should be

similar, except for the C ± O stretch. Therefore, the values of x ¢ ¢
e,i (i = 4± 6) should

not be very diŒerent from that of x ¢
e,i. Secondly, the Coriolis coupling constants

for the three degenerate modes in the excited state were determined, thus facili-

tating the comparison of a calculated spin± rotation constant with that observed

experimentally.

The last issue that this study cleared up is the frequency of v6 in the excited state.

In the original report of the jet-cooled LIF spectrum of methoxy [121] , a feature

was observed at 595 cm 1 and assigned to the fundamental of v6 in the excited state.

In the more recent work [108], which included a ® xture on the free jet expansion

to facilitate vibrational cooling, this feature was shown to belong to a vibrational

hot band. The frequency of v6 was reassigned as 951 cm 1, which was con® rmed by

its rotational analysis. The incorrectness of the original value of this frequency was

independently suggested by Cui and Morokuma [135], whose ab initio calculations

of the excited state frequencies predicted a value of 1034 cm 1 . The reason that this

result is important for the interpretation of the ground-state coupling is that the

lowest-energy vibronic level in the ground state occurs at 652 cm 1. This level was

initially interpreted, in light of an excited state frequency for v6 of 595 cm 1, as a

slightly perturbed v6 = 1 level. This led to a proposed frequency of x ¢ ¢
e,6 only slightly

greater than 650 cm 1. With the reassignment of x ¢
e,6 , the assignment of x ¢ ¢

e,6 needs

to be changed. In table 10 we summarize all the A 2A1 state vibrational frequencies

and Coriolis constants.

6.2.4.2. Rotational structure of X 2E CH3O. Before turning to the vibronic struc-

ture of X 2E CH3O, it will be useful to review the rotational structure of the

vibrationless level from which some relevant results can be gleaned for the Jahn±

Teller analysis. A number of rotationally resolved experiments have been performed

on the vibrationless level of the ground electronic state of CH 3O, including LMR

[72, 73] , microwave absorption [74, 85, 86] and rotationally resolved LIF [104].

The information obtained from these experiments is summarized in table 11. An

important result from table 11 is that the LMR experiment can separate the product

a f ed1/ 2,1 into its components a and f ed1/ 2,1. This determination of a means that the

spin± orbit coupling constant a f e does not have to be extracted from the vibronic
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Table 11. Rotational constants for the X 2 E state of the methoxy radical.

LMR LIF Microwave

Parameter CH3O CH3O CH3 O 13 CH3 O

A ¢ ¢ 5.3280 5.2059 5.3387 5.3562

B ¢ ¢ 0.931 776 0.931 682 5 0.931 639 5 0.910 059 6
a f ed1 / 2 ,1 62.8 61.974 62.486 62.199

a 142.8 Ð Ð Ð
f ed1/ 2,1 0.4397 Ð Ð Ð

A ¢ ¢ f 0
t 1.79 1.7730 1.7436 1.7199

f 0
t 0.3362 0.3406 0.3266 0.3211

« eŒ
aa 1.103 1.3533 1.2308 1.2603

h1 0.103 30 0.002 511 7 0.002 55 0.002 42

h2 0.001 44 0.046 05 0.042 72 0.0426
Reference [73] [104] [74, 85] [85, 86]

structure of the radical but can be assumed to be about 142 cm 1 or less and to

equal 142 cm 1 as f e approaches unity, which it probably does.

These experiments determined A ¢ ¢ f 0
t and A ¢ ¢ quite accurately, yielding a value of

f 0
t = 0.34. They also determined the eŒective spin± rotation constant of the origin

to be 1.353 cm 1 . (We use the values from the LIF experiment [104] because

its analysis incorporated both the microwave data and the rotationally resolved

LIF data.) If one assumes that the observed spin± rotation constant is entirely due

to spin± vibronic coupling, then D f
±
t = 0.13. W hile no Jahn± Teller or spin± orbit

coupling constants can be directly determined from this value, it will serve as a

useful check of any spin± vibronic analysis.

These methods have also determined the rotational constants h1 and h2 . As we

discussed in section 4.3, these parameters contain contributions both from Jahn±

Teller coupling and from mixing with other electronic states. Because the microwave

experiments were done on two diŒerent isotopomers, 12CH3O and 13CH3O, the

contributions from these two sources can be separated, owing to their diŒerent

dependencies on the rotational constants (see section 4.3). Because of these propor-

tionalities, the following pairs of equations can be set up, where the superscripts

(JT) and (L) refer to the contributions from Jahn± Teller coupling and L uncoupling,

respectively:

h
(12)

1 = k
(JT)

1 B
(12)

+ k
(L )

1 (B
(12)

)
2
, (149)

h
(13)

1 = k
(JT)

1 B
(13)

+ k
(L)

1 (B
(13)

)
2
, (150)

and

h
(12)

2 = k
(JT)

2 (A
(12)

B
(12)

)
1/ 2

+ k
(L )

2 (A
(12)

B
(12)

), (151)

h
(13)

2 = k
(JT)

2 (A
(13)

B
(13)

)
1/ 2

+ k
(L)

2 (A
(13)

B
(13)

). (152)

From the microwave experiments, all of the parameters of these equations have

been determined except the proportionality constants k
(JT)

1 , k
(L)

1 , k
(JT)

2 , and k
(L )

2 .

Solving the pairs of 2 3 2 equations for the proportionality constants leads to the

d̀ecoupled’ contributions to h1 and h2 (table 12). (While the values for h1 and h2

from the combined ® t for 12CH3O are probably more precise than the microwave
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Table 12. Contributions to h1 and h2 in CH3 O from Jahn± Teller and L-uncoupling eŒects

k
(JT)

1 = 3.6309 3 10 4 , k
(JT)

2 = 3.5039 3 10 2 , k
(L)

1 = 1.1091 3 10 7 , k
(L )

2 = 2.3757 3
10 7 .

12CH3O 13 CH3 O 12CD3Oa

h1 2.548(3) 3 10 3 2.423(2) 3 10 3 1.55 3 10 3

h2 4.272(18) 3 10 2 4.264(17) 3 10 2 3.58 3 10 2

hJT
1 3.38(3) 3 10 4 3.31(2) 3 10 4 2.69 3 10 4

hJT
2 7.81(2) 3 10 2 7.74(2) 3 10 2 5.08 3 10 2

hL
1 2.886(3) 3 10 3 2.754(2) 3 10 3 1.82 3 10 3

hL
2 3.54(2) 3 10 2 3.49(2) 3 10 2 1.50 3 10 2

a Predicted.

values, we use the microwave values in these calculations since only microwave data

are available for 13CH3O.) From these calculations, it is clear that L uncoupling

dominates h1, while the Jahn± Teller contribution to h2 is approximately twice the

L-uncoupling contribution. For each parameter, the two eŒects have opposite signs

on their contributions. Only a brief report of the rotational constants of CD3O has

been given on the basis of microwave data [85]. From these rotational constants

and the scaling factors determined from the 12CH3O and 13CH 3O, we have made

predictions of the h1 and h2 terms for CD3O. An experimental determination of

the rotational structure in CD 3O is highly desirable, as the larger change in the

rotational constant would increase signi® cantly the precision of the decoupling of

the Jahn± Teller and L-uncoupling eŒects.

As with the Coriolis constants, it would be quite challenging to extract Jahn±

Teller coupling constants Di and x e,i from the hJT
1 and hJT

2 parameters. However,

these rotational parameters may serve as a check of the Jahn± Teller constants, via

equations (124) and (125). We shall return to this comparison in the next section.

The determination of the parameters hJT
1 and hJT

2 means that the rotational

constants at the minimum and maximum of the PES can be calculated via equa-

tion (126). Diagonalizing this matrix with u = 0 and u = yields the following

rotational constants for the minimum and maximum respectively, for the 12CH3O

isotopomer: A ¢ ¢
min = 5.207 43 cm 1 , B ¢ ¢

min = 0.931 344 cm 1, C ¢ ¢
min = 0.930 594 cm 1,

A ¢ ¢
max = 5.207 43 cm 1, B ¢ ¢

min = 0.932 02 cm 1 , C ¢ ¢
min = 0.929 918 cm 1 . These rota-

tional constants are only slightly changed from the rotational constants at the

symmetric point, indicating there is only a small change in the geometry upon the

distortion. This is generally true of molecules subject to a dynamic Jahn± Teller

eŒect, the geometry does not change signi® cantly, but the spin± vibronic structure

changes dramatically.

6.2.4.3. Vibronic structure of X 2E Jahn± Teller coupling of CH3O. While the ro-

tational analysis gives some indication of the Jahn± Teller coupling in the ground

state of methoxy, it does not quantify it in terms of the Jahn± Teller coupling con-

stants and vibrational frequencies. The greatest amount of information about these

parameters comes from the energies of the spin± vibronic levels, which are most read-

ily observed in dispersed ¯ uorescence or SEP experiments. While early dispersed

¯ uorescence experiments were able to identify the vibrational frequencies of the
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 513

totally symmetric modes of the ground state, they lacked adequate intensity and

spectral resolution to characterize completely the Jahn± Teller coupling [119± 123].

Recently, as part of their investigations of the isomerization of CH3O to CH2OH,

Temps and co-workers [109, 124± 126, 141± 143] have used rotationally resolved SEP

to determine more completely and de® nitively the Jahn± Teller vibronic energy levels

in the ground state of CH3O.

The rotationally resolved SEP experiments represent a tremendous advance in

the spectroscopy of the methoxy radical. In typical dispersed ¯ uorescence spectra,

the resolution is not great enough to do any more than resolve diŒerent vibronic

levels. However, because the j = 1
2

levels will have a diŒerent rotational structure

from the j = 3
2

levels, rotational analyses of the SEP spectra provide the j quantum

numbers of the levels, which is an invaluable piece of information to the Jahn±

Teller analysis. The SEP experiments also determined the spin± orbit splitting of

some doublets that have too small a splitting to be resolved by normal dispersed

¯ uorescence. Lastly, the SEP experiments determined the Coriolis and spin± rotation

constants for a number of levels, which provide additional data with which to check

a spin± orbit Jahn± Teller analysis.

Temps’ group also obtained the dispersed ¯ uorescence from pumping the 3141,

3151 and 3161 levels in CH3O and CD 3O. These spectra are very valuable in

extracting the Jahn± Teller coupling constants. The relative intensities of the ground-

state levels between these spectra make the assignment of the ground state levels

much easier. For example, the relative intensities of the levels at 652 and 1525 cm 1

are 5: 1 from pumping the 3161 level of the excited state, but 1: 6 from the 3151 level.

These intensities re¯ ect the vibrational character of the Jahn± Teller mixed states and

should be reproduced by a Jahn± Teller analysis.

Because of the wealth of data available for this radical, the Jahn± Teller analysis

is fairly straightforward. The large splitting of the j = 3
2

levels at 652 and 949 cm 1,

which have enhanced intensities in the dispersed ¯ uorescence from the 3161 level of

the excited states, clearly indicates that v6 has a large quadratic coupling constant K 6.

The energy of these two levels and the energy of the j = 1
2

level from v6 = 1, which

is at 1247 cm 1 , depend mostly on D6 and K 6 . A similar set of levels are observed

for v5 and v4 . Using the program described in section 2.7 we have combined all

this information and obtained a best ® t to the spin± vibronic levels. The parameters

resulting from this ® t are given in table 8. These coupling constants give a total

Jahn± Teller stabilization energy of 419 cm 1, which is dominated by distortions

along the normal coordinates of v5 and v6 .

Because of the abundance of data for the methoxy radical, a number of consis-

tency checks are available for the Jahn± Teller analysis. For example, a similar but

independent analysis has been performed for CD3O. There are two properties of the

radical that change upon isotopic substitution which have a profound eŒect upon

the Jahn± Teller coupling. First, the frequencies of the modes change, most notably

the asymmetric C± H stretch v4 and to a lesser extent the other modes. Second,

the normal modes become diŒerent mixtures of the internal coordinate motions.

However, what does not change is the electronic PES in which the nuclei vibrate.

This means that the Jahn± Teller stabilization energy is a constant, independent of

the masses of the nuclei. Because « total is a constant, or nearly so, and the vibrational

frequencies and normal modes change, the Jahn± Teller coupling constants Di and

K i will be quite diŒerent for CD3O. The coupling constants for CD3O should in
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514 T. A. Barckholtz and T. A. Miller

general be larger than those for CH3O because the vibrational frequencies will be

lower, requiring a larger Di to maintain the same stabilization energy. Table 8 shows

that this is the case for D4 and D5 , although D6 decreases slightly, presumably

because of the change in normal coordinates. However, the overall degrees of Jahn±

Teller stabilization of the two isotopomers are the same, within the accuracy of the

calculations.

The LM R experiment determined a = 142 cm 1 [72, 73] . Dividing the Jahn±

Teller simulation value for a f e = 145 by this number yields f e = 1.02. W hile this

value is greater than unity, a reduction in a f e to 135 cm 1 would yield f e = 0.95.

Such a variation in a f e is probably within the error of the simulations of the

Jahn± Teller spin± vibronic analysis.

As a further check on the spin± vibronic parameters, we can calculate the Coriolis

coupling constant obtained from the rotational analysis of the origin. This calculation

assumes that the individual vibrational mode Coriolis constants f i are the same

as those for the excited state, and that f e = 0.95. Given these approximations,

the Coriolis constant value of D f from the spin± vibronic analysis is 0.10, which

compares well with the value of 0.13 obtained from the rotational analysis.

We can also calculate a value for the rotational parameters h
(JT)

1 and h
(JT)

2 using the

Jahn± Teller parameters x e,i and Di via equations (124) and (125). These calculations

require the rotational constants, which are known experimentally, and the inertial

derivatives for the Jahn± Teller active modes, which we have calculated via ab initio

calculations [98]. Entering all these parameters into equations (124) and (125) yields

values for h
(JT)

1 and h
(JT)

2 of 3.4 3 10 4 and 4.3 3 10 2 respectively, compared with

3.38(3) 3 10 4 and 7.81(2) 3 10 2 from the rotationally resolved experiments. (The ab

initio calculations of the inertial derivatives are unable to determine the sign of the

constants, so only the absolute values should be compared.) The agreement between

these constants is quite good, considering that several assumptions are made in

the derivations of equations (124) and (125) and that the experimental values are

determined using only the isotopic substitution of a 13C atom for a 12C atom.

6.2.4.4. Spin± orbit splitting in v3 . In the development of the Jahn± Teller Hamilto-

nian and basis set, we made the assumption that the totally symmetric modes of the

molecule could be excluded from the calculations. Under this assumption, the energy

levels of the symmetric modes should appear with the same spin± orbit splitting as

the origin. As part of their investigations, Temps and co-workers [125] obtained the

SEP spectra of the progression in v3 in methoxy up to v = 10. They found that

the spin± orbit splittings of the lowest few levels (v3 % 3) show little variation from

62 cm 1, while the spin± orbit splitting for v3 = 4 is 50 cm 1, and for v3 > 4 the

spin± orbit splitting is much smaller, varying from 38 to 30 cm 1 .

There are several possible explanations for the decrease in the spin± orbit split-

tings at higher energies. One is that, at higher energies, the density of vibrational

levels is much greater, which increases the probability of vibronic interactions be-

tween the C± O stretch levels and other levels, including non-totally symmetric ones.

Any interaction with a level of e symmetry will reduced the spin± orbit splitting, as

observed. A second possibility is that interactions with other electronic states be-

comes stronger at higher energies, which can alter the spin± orbit splitting, perhaps

reducing it.

The third explanation is that, as v3 is excited, the C ± O bond becomes longer.
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Quantitative insights about molecules exhibiting Jahn± Teller eŒects 515

The dissociation limit of CH 3O in its ground electronic state along the C ± O bond

is a CH3 radical in its ground state 2A ¢ ¢
2 (D3h) and an oxygen atom in its 3P ground

state. One might expect, then, that at longer bond lengths the spin± orbit splitting

of the atomic oxygen should be eventually recovered. In contrast, the opposite

result is observed experimentally. The resolution of this discrepancy again lies in

the removal of one of the initial assumptions that we made, that is that the totally

symmetric modes are independent of the Jahn± Teller active modes. Under this

assumption, all the totally symmetric modes should have a Jahn± Teller structure

built on them exactly as the origin does. However, at longer C ± O bond lengths, the

frequencies of the other vibrational modes will most certainly change. For example,

v6 , which corresponds to a motion of the oxygen atom oŒthe symmetry axis and

a concurrent rocking of the CH 3 group, should decrease in frequency as the C ± O

bond is lengthened, the weaker bond allows the H± C ± O bond angle to be more

easily distorted. If the same Jahn± Teller stabilization energy is to be obtained, D6

must be increased, which will in turn decrease the spin± orbit splitting of the levels.

6.2.4.5. Transition dipole moments. Up to this point, we have not discussed the

intensities of the vibronic levels in the electronic transition in detail. Because the

electronic transition is between a 2A1 state and a 2E state, the transitions are

expected to have perpendicular transition dipole moments. However, the excitation

and emission spectra of methoxy, and to a lesser extent CF3O [107] and CdCH3

[95], show unusual intensity patterns. The rotationally resolved excitation spectrum

of CH3O clearly shows both perpendicular and parallel transition moments in the

fundamentals of the e modes of the excited state [108] . Furthermore, the SEP spectra

of the 61 and 3161 levels also contain transitions via both perpendicular and parallel

transition dipole moments [124] . While linear Jahn± Teller coupling can account for

the intensities of the perpendicular bands, it provides for no intensity to the parallel

transitions.

The likely explanation for the observation of parallel transitions in these

molecules is that the electronic states are not pure 2A1 or 2E states. A parallel

transition moment will be created if the ground 2E state is mixed with another

state of A1 symmetry. Such a mixing can give rise to a pseudo-Jahn± Teller eŒect

in the 2E state. However, the excited 2A1 state can be mixed with other states of E

symmetry, thereby inducing a parallel moment. We believe that the latter scenario

is probably more important because the ground state is greater than 31 000 cm 1

below the nearest excited state, while the A 2A1 state is located very close in energy

to several other excited 2E and 4E states, including a 4E state that is responsible

for the pre-dissociation observed in the LIF and ¯ uorescence depletion spectra

[108, 128, 135].

6.2.5. Summary of the methoxy family of radicals

As mentioned when summarizing the metal monomethyl radicals (section 6.1.4),

there are a number of aspects when dealing with the spectroscopy of Jahn± Teller

active species. First, one has to understand qualitatively the patterns from the

various spin± vibronic eŒects to assign the spectrum and then to extract quantitative

information. Once that is accomplished, one can proceed to determining the nature

of the Jahn± Teller eŒect and the resultant PES with its stabilization energy and

distortion.

In the metal monomethyl radicals previously discussed, the Jahn± Teller eŒects
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516 T. A. Barckholtz and T. A. Miller

were generally small enough that the traditional approximations provided reasonably

accurate spin± vibronic eigenvalues and expectation values. The situation is quite

diŒerent, with the exception of CH3S, for the methoxy radicals where Jahn± Teller

and spin± orbit eŒects are comparable. In such cases, the only reliable approach is

the direct diagonalization of the Hamiltonian matrix (equations (67)± (71)) to obtain

the requisite spin± vibronic eigenvalues and eigenfunctions, the latter of which yields

the expectation values relevant to the rotational structure.

Evidence of the signi® cance of both Jahn± Teller and spin± orbit eŒects on the

methoxy family can be gleaned from the quenching of the spin± orbit coupling in

the vibrationless level. For CH3O, CH3S, CF3O and CF3S, the spin± orbit coupling

in the vibrationless level is reduced by 61% , 25% , 84% and 56% respectively of

the value of a f e . This compares with a maximum reduction of 20% in the metal

monomethyls.

We see in analysing the spectra the importance of using all the information

available from both the vibronic and the rotational spectrum. For CH3S, where the

Jahn± Teller eŒect is relatively small compared with spin± orbit coupling, no Jahn±

Teller activity in any of the vibrational modes is directly discernible. However, as

we have seen, the quenching of the electronic angular momentum is very sensitive

to distortion and the comparison of the spin± orbit splittings in two isotopomers of

CH3S allows us to quantify the Jahn± Teller activity.

However, for the remaining methoxy radicals, Jahn± Teller activity is evident in at

least two, if not all three, e modes. As mentioned above, the comparable magnitudes

of the Jahn± Teller and spin± orbit coupling means that the only reliable approach

to analysing the spectrum is a ® t of the Jahn± Teller and spin± orbit parameters

involved in the complete calculation of the spin± vibronic energy levels. For the

most part there is su� cient information in the vibronic spectrum to determine these

parameters. The expectation values of the spin± vibronic eigenfunctions then can be

independently measured from the rotational spectrum. In some cases this check is

quite extensive and generally satisfactory.

Particularly in the oxygen-centred radicals, there is clearly measurable activity in

all vibrational modes. However, generally speaking it is smallest for v4 and v5 , the

modes involving the methyl hydrogen atoms (or ¯ uorine atoms). It is, however, not

surprising that all four of the methoxy radicals should exhibit the most Jahn± Teller

activity in v6, with D6 being the largest linear Jahn± Teller coupling constant for

each radical. The motion of the atoms corresponding to v6 is often described as a

`methyl rock’. While this description is fairly accurate, an equivalent description is

òxygen or sulphur tilt’. Describing the motion as an oxygen or sulphur tilting oŒ

the symmetry axis gives a clearer insight into the source of the Jahn± Teller coupling.

The 2E ground state for all these radicals arises from the partial occupation of a

p pair of orbitals that are centred on the heteroatom. It is therefore completely

consistent with all the Jahn± Teller analyses that the vibrational mode that is most

active corresponds to the motion of the heteroatom. The other two modes, the

asymmetric C ± H(F) stretch (v4) and the H± C ± H (F± C ± F) scissor (v5 ) do not involve

the heteroatom nearly as much as v6 .

From table 8 we note that for the sulphides CH3S and CF3S the Jahn± Teller

stabilization energy vanishes for the spin± vibronic PES. This means that, like the

metal monomethyls (except for MgCH3 ), the minimum of all normal mode cuts of

the PES of both spin components of the 2E state remains at the C3v con® guration,

as in ® gure 2(h).
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However, for the oxides the situation is quite diŒerent. On the lower (2E3/ 2 ) PES,

there appear to be local potential minima at distorted geometries, as in ® gure 2(g),

for all three normal coordinate. As table 8 shows, although the D i values are quite

small, the energy stabilizations for v4 and v5 are non-negligible. Nonetheless the

relatively high frequencies of these modes means that the zero-point energy places

even the vibrationless level high above the conical intersection of the PES. Modest

distortions in the PES have only small eŒects on observables, meaning in turn that

the experimental spectra determine these distortions with limited precision. The

situation is considerably diŒerent for v6 , which is relatively low in frequency and

is expected to be actively involved in the Jahn± Teller distortion. In this case the

Jahn± Teller stabilization energies are determined with higher precision. We see that

CF3O has the largest Jahn± Teller coupling parameter, D6, which is possibly caused

by the relatively large delocalization on to the ¯ uorine atoms of the e orbital in

which the unpaired electron resides.

7. Conclusions

The purpose of this paper is to review the rami® cations of the Jahn± Teller eŒect

on isolated molecular systems. It has been particularly our purpose to provide a

guide to experimentalists to analyse and extract correctly the maximum information

possible from the rapidly growing number of available spectra. In providing what we

hope is a useful account of the available Jahn± Teller theory we have found several

shortcomings with respect to applications to real molecular systems.

The most critical shortcoming is the general, although not universal, tendency

of the previous literature to treat spin± orbit coupling at best as an afterthought

to Jahn± Teller coupling. W hat is emerging experimentally is that spin± orbit and

Jahn± Teller coupling should be treated on a comparable footing, that is a full spin±

vibronic calculation. Such an approach will be necessary for almost all molecules

involving second-row (and heavier) atoms, with a few notable exceptions such as

aromatic hydrocarbons. Finally, when the atoms become heavy enough, spin± orbit

coupling will dominate and the appropriate approach may be to treat the Jahn± Teller

coupling as the perturbation.

We have tried to outline a comprehensive treatment of the problem combining the

eŒects observable in the spin± vibronic energy level structure with those revealed by

rotationally resolved spectroscopy. Our initial treatment is quite general, applicable

to molecules conforming to any (non-cubic) symmetry group and includes higher

order Jahn± Teller interactions. We have given detailed descriptions of the appropriate

Hamiltonian matrices. In addition, we have described how experimental results can

be related to the PES of the molecule.

We have taken the simplest Jahn± Teller symmetry, C3v , as an example both to

demonstrate the importance of various theoretical interactions as well as to apply

the theory to eight Jahn± Teller active molecular states, the A 2E states of the metal

monomethyls and the X 2E states of the methoxy radical family, for which copious

data have been obtained in recent years.

Theoretically we have provided extensive information about whether traditional

approximations made in Jahn± Teller analyses are justi ® ed. In the best cases, the

recent increase in available computational power often render these approximations

super¯ uous today and in other cases direct computations demonstrate that some

traditional approaches are misleading or just simply wrong.

In the molecules whose spectra we have chosen to review, the Jahn± Teller eŒects
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518 T. A. Barckholtz and T. A. Miller

are small to moderate. We have demonstrated that consistent molecular information

can be obtained from both vibronic and rotational spectra. We have seen how

sensitive the electronic and vibronic angular momenta are to even small Jahn± Teller

distortions, which in turn make them sensitive probes of such eŒects. In contrast, we

have seen that even molecules with signi® cant Jahn± Teller activity may have PESs

with the global minimum at the symmetrical position.

Overall the consistency and agreement among various experimental observations

are rather pleasing for the systems that we have considered. However, it should

be pointed out that there still remain minor inconsistencies between theoretical

expectations and experiments. Many past approximations have been eliminated

owing to the increase in computational power. However, some, like not including

the symmetric vibrational modes in the calculation, remain and may be the source

of some of the remaining di� culties. However it may also be true that some eŒects

remain inadequately treated by theory at this point.

An area that will be treated in detail elsewhere [98], but has been referred to little

in this work, is that of ab initio calculations of Jahn± Teller and related eŒects. One

should note that ab initio calculations on even open-shell molecules are becoming

increasingly accurate and should in the near future provide quantitatively meaningful

information about Jahn± Teller eŒects. The development in this review is in many

ways ideally suited to comparison of experiment and such calculations, because in

most cases the parameters related to Jahn± Teller coupling that are determined from

experiment and that have been developed in this paper are well de® ned in terms of

quantities calculable from electronic wavefunctions.

In conclusion, it is gratifying to note that the Jahn± Teller eŒect, conceived just

over 60 years ago, is still alive and well today. It is alive ® rstly because symmetry

and its breaking lie at the heart of our understanding of the physical universe.

However it is also alive because a large number of reactive intermediates in very

important chemical reactions have electronic structures satisfying the Jahn± Teller

theorem. Understanding the Jahn± Teller eŒect is an important prerequisite to using

their spectra to monitor the chemistry. Most importantly, after over 60 years of

nearly continuous eŒort, the enigma that the Jahn± Teller eŒect has represented to

experimentalists is ® nally being successfully penetrated. Today there is real hope that

this eŒect, which has often frustrated spectroscopists, is about to be converted into

an increasingly useful tool to understand open-shell molecules and their chemistry

better.
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Appendix A: Glossary of symbols used.

Equation

Symbol Description or section Units

a Spin± orbit coupling constant (18) cm 1

A Rotational constant about the z axis for a sym-
metric prolate top

(93) cm 1

B Rotational constant about the x or y axes for a

symmetric prolate top

(93) cm 1

dj ,nj Ham reduction factor, spin± orbit coupling

quenching parameter

(80) Ð

Di Linear Jahn± Teller coupling constant for the ith

vibrational mode

(59), (70) Ð

E0 Total energy of the symmetric point, expectation

value of ÃH e

(67) kg m2 s 2

g ij Second derivative of energy with respect to the
ith Jahn± Teller active mode

(16) kg s 2

G Vibrational angular momentum Section 4.1 Ð

h1 l-type doubling term for a symmetric top in a
degenerate state

(94) cm 1

h2 l-type doubling term for a symmetric top in a

degenerate state

(94) cm 1

hJT
1 Jahn± Teller contribution to h1 , proportional to

B0

(122) cm 1

hJT
2 Jahn± Teller contribution to h2 , proportional to

(A0B0 )
2

(123) cm 1

hL
1 L-uncoupling contribution to h1 , proportional to

B 2
0

(122) cm 1

hL
2 L-uncoupling contribution to h2 , proportional to

A0 B0

(123) cm 1

j Linear Jahn± Teller quantum number, de® nition
depends on choice of symmetry operations, see

section 3.2.2

(46) Ð

J Rotational quantum number (88)± (91),

(93)

Ð

J Total angular momentum, excluding nuclear spin Section 4.1 Ð

ki Derivative of energy with respect to the ith Jahn±

Teller active mode

(15) kg m 1 s 2

K i Quadratic Jahn± Teller coupling constant for ith

vibrational mode

(60), (71) Ð

li Quantum number for the vibrational angular

momentum of the active mode ith Jahn± Teller

(8) Ð

lt Total vibrational angular momentum (5) Ð

L Electronic orbital angular momentum (73),
Section 4.1

Ð

M Projection of J on the space-® xed z axis (88)± (91) Ð
M i Reduced mass of vibrational mode the ith (17) kg

n j Index q̀uantum number’, used to identify the
nj th energy level of a given value of j

(74) Ð

N Total angular momentum, excluding spin Section 4.1 Ð
P Projection of J on the molecular z axis (88)± (91) Ð

Qi,± Complex conjugates of Cartesian normal coordi-
nates for the ith Jahn± Teller active mode

(11) Length

R Rotational angular momentum Section 4.1 Ð
se Symmetry label of electronic state, Ese (3) Ð

sv Symmetry label of vibrational mode, esv (22) Ð
sk Relative phase between vibrational and elec-

tronic phases

(26) Ð
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Appendix A: continued.

Equation

Symbol Description or section Units

S Spin quantum number of the state (6) Ð

S Electron spin angular momentum Section 4.1 Ð
ÃT Transition dipole operator (128) Ð

U i,± Function de® ning the potential energy surface
for the ith vibrational mode

(54), (64) cm 1

u i Vibronic quantum number for strong Jahn± Teller
coupling

(79) Ð

vi Principal quantum number for the ith active
mode

(8) Ð

a Symmetry label for vibronic energy level (74) Ð

« i Jahn± Teller stabilization energy of ith vibrational
mode

(61) cm 1

« so
i Jahn± Teller stabilization energy of ith vibrational

mode, calculated with spin± orbit coupling
(66) cm 1

« total Total Jahn± Teller stabilization energy (62) cm 1

« so
total Total Jahn± Teller stabilization energy, calculated

with spin± orbit coupling

(66) cm 1

« aa Spin± rotation constant (95), (96) cm 1

f e Electronic orbital angular momentum (64), (69) Ð

f i Coriolis coupling constant for ith vibrational
mode

(109) Ð

f t Coriolis coupling constant for a vibronic level (103) Ð

f
±
t Coriolis coupling constant for a spin component

of a vibronic level

(118), (119) Ð

k i Curvature of electronic potential with respect to
the ith vibrational mode

(14) kg s 2

L Quantum number for projection of electronic or-
bital angular momentum on the symmetry axis

(8) Ð

q i Cylindrical normal coordinate of the ith Jahn±
Teller active mode

(12) Length

S Quantum number for projection of spin angular
momentum on the symmetry axis

(8) Ð

u i Cylindrical normal coordinate of the ith Jahn±
Teller active mode

(12) rad

x e,i `Equilibrium’ vibrational frequency of the ith vi-

brational mode

(17), (68) cm 1

x 0,i `Fundamental’ vibrational frequency of the ith
vibrational mode

Section
3.2.1

cm 1

X Total projection of angular momentum on the
symmetry axis, excluding nuclear spin, equal to

L lt + S

(50) Ð
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